
 

A Tree-Driven Ensemble Learning Approach to 

Predict FS Welded Al-6061-T6 Material Behavior 
 

 1, 2Abdelhakim Dorbane   
1Smart Structures Laboratory (SSL), Department of Mechanical 

Engineering Belhadj Bouchaib University of Ain Temouchent Ain 

Temouchent, Algeria. 

2Laboratory of Research in Mechanical Manufacturing Technology 

(LaRTFM), National Polytechnic School, Maurice Audin, Oran, 

Algeria.  

a.dorbane@gmail.com 

3Fouzi Harrou, 3Ying Sun 
3Computer, Electrical and Mathematical Sciences and Engineering 

(CEMSE) Division 

King Abdullah University of Science and Technology (KAUST) 

Thuwal 23955-6900, Saudi Arabia. 

fouzi.harrou.2016@ieee.org  

 

 

Abstract—This paper proposes a machine learning approach 

to forecast the mechanical behavior of an aluminum alloy, Al6061-

T6, in the case of friction stir welding. Essentially, we investigate 

the performance of the bagged trees regression (BT) in forecasting 

the stress-strain curve of an aluminum alloy. This choice's 

motivation is due to BT's ability to improve the performance of 

machine learning models by combining multiple learners versus 

single regressors. Actual data was gathered by performing 

uniaxial tensile testing on both base material and joined using 

FSW at a deformation speed of 10-3s-1. Then, the performance of 

the BT model is compared to that of the Support Vector regression, 

and it proved to be more accurate. 

Keywords—machine learning, bagged trees, data-driven 

methods, FSW 

I. INTRODUCTION 

The welding institute (TWI) first proposed friction stir 
welding (FSW) in 1991 as a solid-state material joining process 
[1]. FSW has proven to be a high-speed, high-quality material 
connecting method. Because the total heat generated during the 
welding process is below the melting temperature (about 80% of 
the base material's melting temperature), this welding approach 
can greatly decrease or eliminate problems that may develop 
when employing traditional welding techniques, such as severe 
distortion. FSW is widely used in many industries, mostly in 
aerospace industry [2], robotics [3], In the shipbuilding and 
marine industries [4], In the armor industry [5], and the 
automotive industry [6], and it also permits to weld dissimilar 
materials combinations [7], [8] 

The effect of varying friction stir welding parameters such 
as rotation speed, advance speed and cooling rate on the 
mechanical properties of aluminum alloy welds was 
experimentally investigated by several researchers [9][10]. 

Artificial intelligence (AI) is a broad field of computer 
science that focuses on creating intelligent machines or 
programs that can accomplish activities that would generally 
necessitate human intelligence and is widely applicable in 
materials science. Moreover, AI has known an increasing 
interest in the Friction Stir Welding applications; it has been 
used to detect defects in materials degradation [11], to forecast 

the mechanical properties of materials [12], and tensile strength 
prediction [13]. 

In recent years, there has been an increasing interest in 
employing artificial neural networks to forecast the tensile 
strength of FSW (ANN). Neural networks have a high capacity 
for detecting and identifying patterns, which can be used to 
forecast or anticipate the mechanical properties of materials [14].  

[15] used an FSW cell environment to evaluate various 
machine learning approaches such as principal component 
analysis (PCA), K-nearest neighbor (KNN), multilayer 
perceptron (MLP), support vector machine (SVM), and random 
forest (RF) to predict defective welds under a variety of process 
conditions, alloys, and joint configurations. The authors stated 
that the acquired results could make a significant contribution to 
the optimization of process parameters. 

On the other hand, [16] used machine learning techniques to 
predict the best FSW process parameters for joints. The authors 
first gathered experimental results on AA2024/AA7075 that 
were distinct in terms of ultimate tensile strength and hardness. 
These data were analyzed using a support vector machine (SVM) 
model and a new artificial neural network (ANN) model that 
included the Nelder-Mead algorithm, as well as an effective 
parametric combination to actually confirm tensile strength and 
hardness. The authors came to the conclusion that the ANN 
approach outperforms SVM strategies. Simulation studies were 
used to demonstrate the validity and accuracy of the suggested 
method. 

In another study, [17] investigated the prospect of using 
machine learning techniques in the welding sector. The authors 
reported that machine learning (ML) is a valuable tool for 
resolving problems in different welding methods such 
as Tungsten inert gas welding (TIG), Friction Stir Welding 
(FSW), Laser welding, Resistance Welding, Metal inert gas 
welding (MIG) and Plasma arc welding. Furthermore, the 
authors stated that ML has the potential to improve the welding 
process as well as the quality control procedure, it has aided in 
the real-time detection of defects during welding. 

[13] examined how machine learning approaches including 
Gaussian process regression (GPR), support vector machine 
(SVM), artificial neural network (ANN), and linear regression 
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(LR) may be used to analyze and predict the tensile behavior of 
friction stir welded AA7039 aluminum alloy. The authors 
demonstrated that all of the models utilized can predict the 
tensile behavior of the material under study. Furthermore, as 
compared to other machine learning methods, the ANN 
modeling approach is substantially superior at predicting the 
tensile behavior of FS welded AA7039. 

In the past two decades, ensemble learning-driven methods, 
which integrate several single models, have shown a promising 
solution compared to the traditional machine learning methods. 
Importantly, ensemble models are characterized by their ability 
to reduce the model’s variance while getting a low bias, making 
them very appealing to enhance prediction precision. This study 
presents a data-driven approach to forecast FSW Al-6061-T6 
material’s behavior. Specifically, we adopted the bagging 
ensembles of decision trees because it is an effective prediction 
method that takes the benefit of numerous relatively weak 
individual trees to improve prediction accuracy. Additionally,  it 
decreases the overall error and can merge several models. As we 
know, the Bagging trees approach has not been exploited for 
material behavior forecasting. 

Real measurements were gathered by conducting uniaxial 
tensile testing on the base material, and friction stirred welded 
are employed to demonstrate the performance of the 
investigated methods. We compared the performance of the 
bagged trees (BT) method with support vector regression (SVR). 
Results revealed the BT approach's promising and superior 
prediction capacity compared to the SVR. 

II. MATERIALS AND METHODS 

A Gantry friction stir welding machine was employed to 
weld 50×100×3 mm Al6061-T6 plates using a steel alloy FSW 
tool having a conical threaded pin having a superior and inferior 
radius of 1.6 mm and 1.45 mm respectively, and a 10 mm 
shoulder diameter. A conventional clenching system was used 
to hold the plates, as shown in figure 1. 

 

Fig. 1. FSW machine setup. 

The chemical elements (%) of the Al6061-T6 aluminum 
alloy used to carry out the present study is following the ASTM 
B308 standards [18] (Table I). The working plates were cut in 
the rolling direction to permit the joint lane to be aligned with 
the rolling direction of the plates.  

1600 rpm tool spinning and 1000 mm/min tool traversal 
speeds with a 3° tool pitch inclination were used to carry out 
FSW operation. FSW tensile examination specimens were 
acquired orthogonally to the obtained joints and were 
mechanically ground to take out any weld surface defect. 
Tensile experiments were implemented at various heat degrees 
of 25°C, 100°C, 200°C and 300°C to contrast the effect of 
temperature on mechanical aspects of the welded and the as-
received materials. 

TABLE I. THE CHEMICAL COMPOSITION OF AL6061-T6 (ASTM-
B308/B308M-10, 2010) 

Wt. % Al Mg Si Cu Cr Fe Zn Mn Ti Other each 
Other, 

total 

Min 95.8 0.8 0.4 0.15 0.04 - - - - - - 

Max 98.6 1.2 0.8 0.4 0.35 0.7 0.25 0.15 0.15 0.05 0.15 

A. Materials and Methods 

In the present investigation, tensile testing was carried out 
using a screw-driven MTS insight tensile testing machine with 
a 30 kN load cell, an LBO-series Thermocraft LabTemp 
laboratory oven, and a PC. The tensile test samples were 
mechanically made using a CNC machine, and the dimensions 
followed ASTM guidelines [19]. They were cut perpendicular 
to the weld direction and ground with 180 grit silicon carbide 
paper, preceded by 1200 grit silicon paper to discard wrinkles 
and any bottom defects. Tensile samples made from as-received 
material were sectioned orthogonally to the rolling direction to 
get a direct comparison between the obtained joints and the as-
received material. Furthermore, tensile testing at elevated heat 
was carried out according to ASTM standards [20]. 

B. Microstructure 

 

Fig. 2. Top and bottom sides of the weld surface. 

Figure 2 shows the images of the weld junction using a 
spindle speed of 1600 rpm and a tool advancement speed of 
1000 mm/min. The top image shows the weld's upper side, with 
no visible defects such as surface galling, lack of fill, or 
excessive flash. The bottom image, on the other hand, shows the 
weld's bottom side, with no visible faults such as lack of 
penetration or fusion, as stated in [21], [22]. 

C. Bagged Trees Regression Approach 

The main idea of bootstrap aggregating (bagging) trees 
primarily proposed by Breiman [23] is based first on the 
construction of multiple similar but independent predictors, then 
the outputs of such predictors are averaged to obtain the final 
prediction. This allows the reduction of the variance error as 
pointed out in [24]. In bagging trees/ensembles of decision trees 
methods, a large number of individual models (trees) are 

FSW tool

Fixture 
system

Weld's bottom sideWeld’s top side

Weld direction
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combined with each other (see Figure 3) to improve the quality 
of prediction of the model. The use of the BTs predictive model 
is of great importance because it allows us to reduce the variance 
of regression trees and address the overfitting problem in a 
single tree.  Recently, the BT-based prediction method 
demonstrated good performance in different applications, 
including wind power prediction [25] and swarm motion speed 
prediction [26]. Figure 3 illustrates the basic concept of the 
bagging trees prediction approach. According to such a figure, 
new training datasets of the same size n are first created from the 
original data by selecting n out of n samples uniformly with 
replacement from the original training dataset. Then, a training 
process starts, where each tree in the ensemble is trained 
individually on the corresponding training new sets. In the 
present work, 30 trees are used in the bagging trees approach. 
Lastly, the average of all output predictions is computed to 
obtain the final prediction. The prediction of the bagging trees 
model has the following form: 

  () 

where fi(X), i = 1, . . . , M are regression trees. 

 

 

Fig. 3. Illustration of the BT-driven prediction model. 

III. RESULTS AND DISCUSSION 

A. Stress-Strain Data 

 

Fig. 4. Stress data distribution of the base material and FSW. 

This study investigates Al6061-T6 aluminum, which was 
welded employing the FSW procedure and tensile tested at room 

temperature and utilizing a deformation speed of 10−3s−1. Figure 
4 shows the stress data distribution for base material and FS 
welded plates. From Figure 4, we observe that the ultimate 
tensile strength of the plates is relatively larger than that of the 
FSW plates, which confirms the results in [27]. Specifically, this 
is because of the presence of several areas with varying grain 
dimensions in the welded joint. 

B. Stress-Strain Modeling 

At first, a preliminary step to convert the time-series 
forecasting problem into a supervised learning problem is 
required to use the considered machine learning methods. This 
enables the creation of pairs of input and output data points. The 
prediction models will use the data at the previous time t-1 to 
predict the value of time t (see [28] for more details).  At that, 
we split the data into two sets: training (80%) and testing (20%). 
To construct the prediction models, we used a training set. A 5-
fold CV procedure has been adopted in training to avoid 
overfitting. For the BT model, 30 trees are used, and for the SVR 
model, we used a Gaussian kernel. Figure 5 (a-b) displays the 
actual and predicted strain-stress values of FSW and base 
material using BT and SVR models based on training data. 
Results in Figure 5 indicate the good prediction capacity of the 
two used models based on training data. 

 

 

Fig. 5. Measured vs predicted stress-strain curves using BT and SVR models 

based on training data (a) base material and (b) FSW. 

C. Stress Strain Forecasting 

Now, we verify the prediction ability of the trained models 
using new testing data. Figure 6(a-b) shows the actual stress-
strain curves and predictions based on the BT and SVR models 
for the based material and FSW. We observe that the BT model 
achieves satisfactory prediction performance. However, the 
SVR model is not providing acceptable prediction performance 
for both the base material and FSW. 
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Fig. 6. Actual vs. forecasted stress-strain data using BT and SVR models 

based on testing data under 25°C (a) base material and (b) FSW. 

We also quantitatively evaluate the prediction accuracy of 
the considered models (BT and SVR) based on Root Mean 
Square Error (RMSE), mean absolute error (MAE), Coefficient 
of determination (R2), and mean absolute percentage error 
(MAPE) (Table II). We can see that the BT model achieved high 
prediction performance in terms of the computed statistical 
scores. 

TABLE II. EVALUATION METRICS OF FORECASTING USING TEST DATA 

Methods RMSE  MAE  R2   MAPE 

SVR (Base material) 9.19 8.41 0.70 2.33 

BT (Base material) 0.72 0.54 1.00 0.15 

SVR (FSW) 4.32 4.31 0.64 1.39 

BT (FSW) 0.43 0.37 1.00 0.12 

 
Figure 7 depicts the boxplots of the prediction errors using 

the BT and SVR models for the base material and FSW. We 
observe that the prediction error of the BT method is around 
zeros, which means that the BT model can follow the future 
trend in strain-stress data for both the base material and FSW. 
However,  the prediction error from the SVR model diverges 
from zeros, highlighting the difficulty of this model in capturing 
the variation in strain-stress data. Hence, these boxplots confirm 
the superior performance of the BT models over the SVR. 

 

 

 

Fig. 7. Distribution of prediction errors using BT and SVR models based on 

testing data under 25°C (a) base material and (b) FSW. 

IV. CONCLUSION 

Precise prediction of mechanical properties is undoubtedly 
crucial to reduce the number of experimental testing and thus 
save time and costs. This paper investigated the desirable 
features of the bagged trees method to improve the prediction of 
the stress-strain curves of Al6061-T6 base material and FSW 
joints. This study demonstrated that using an ensemble model 
(i.e., BT) helps reduce the prediction error. Also, we compared 
the BT-based prediction method to that of the SVR method.  

In future work, it would be interesting to investigate other 

machine learning-driven prediction methods, such as ANN and 

Gaussian process regression,  for predicting material behavior 

of other types of material alloys and heterogeneous FSW of 

different materials. Another direction of improvement consists 

in employing Bayesian optimization to tune the  BT 

hyperparameters in training for improved prediction 

performance. Furthermore, it would be crutial to investigate the 

ability of BT and SVR machine learning models in predicting 

the material’s behavior of various metal alloys at different 

temperatures and strain rates. 
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