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Abstract Accurately predicting stress–strain curves is

essential for understanding the plastic behavior of metallic

materials. This study investigates the effectiveness of

machine learning (ML) methods in predicting stress–strain

curves for aluminum alloys at different temperature levels.

Specifically, three ML techniques, Gaussian process

regression (GPR), neural network (NN), and boosted trees

(BST), were utilized to predict the stress–strain response of

Al6061-T6 at temperatures ranging from 25 to 300 �C. The

performance of these ML models was evaluated using

actual strain–stress measurements obtained from uniaxial

tensile testing on Al6061-T6. A fivefold cross-validation

approach was applied to train the models under investiga-

tion. Optimal parameters for the ML techniques were

obtained during the training phase using the Bayesian

optimization method to minimize mean absolute error.

Four statistical metrics were employed to assess the accu-

racy of the predictions. The results of this study

demonstrate the potential of machine learning methods in

accurately predicting strain–stress measurements of mate-

rials. Additionally, the NN model outperformed the other

models, achieving an average mean absolute error per-

centage of 0.213 and a coefficient of determination R2 of

0.998. Furthermore, it was observed that crack initiation

mechanisms varied with temperature; particle fracture

dominated at temperatures up to 200 �C, while interfacial

decohesion prevailed at 300 �C.
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Introduction

Introduced in 1935, Al6061-T6 is a precipitation-hardened

aluminum alloy designed to meet the demand for a material

with intermediate strength, exceptional toughness, and

weldability under specific conditions [1, 2]. Its versatility

has led to widespread utilization across various industries,

including automotive, aviation, and watercraft. In the

motocar sector, Al6061-T6 finds application in the manu-

facturing of diverse motocar panels, structural components,

and wheels. Similarly, the aviation industry relies on this

alloy for the production of critical structural elements like

airfoils and fuselage. Furthermore, its remarkable resis-

tance to corrosion, even in saltwater environments, has

made it a preferred choice in the watercraft sector [3].
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Numerous research studies have been conducted to

investigate the microstructural and mechanical behavior of

Al6061-T6 aluminum alloy. In a study by [4], the influence

of heat treatment on the microstructural and mechanical

properties of Al-6061 alloy with Scandium (Sc) was

examined. The researchers found that the addition of Sc

resulted in grain size refinement in the as-cast Al6061 alloy,

leading to improved mechanical characteristics. Further-

more, solid solution and heat treatment were found to

enhance the mechanical properties of Al6061 aluminum

alloy. Another study conducted by [5] focused on evaluating

the impact of heating on the microstructural features and

mechanical properties of Al6061 alloy. The experimental

investigation revealed that increasing the homogenization

annealing temperature initially augmented the yield strength,

tensile strength, and ductility of the alloy. However, beyond

a certain point, these properties started to decrease. The

study identified the optimal annealing temperature for this

alloy as 575 �C. Several other research articles have been

published investigating the microstructural and mechanical

characteristics of Al6061 processed using various tech-

niques, including extrusion [6], forging [7], rolling [8], equal

channel angular pressing (ECAP) [9], and different joining

processes [10–12]. These studies have contributed valuable

insights into understanding the effects of different process-

ing procedures on the microstructure and mechanical

behavior of Al6061 alloy.

Despite its long history of use, the predictive modeling

of the mechanical behavior of Al6061-T6 aluminum alloy

remains an active area of research. Understanding and

accurately forecasting the material’s mechanical properties

are essential for enhancing its performance and enabling

efficient design practices. Recently, machine learning

techniques have emerged as powerful tools for predictive

modeling in various scientific and engineering fields such

as the analysis of failure in welding techniques [13],

manufacturing failures [14], cutting tool life prediction

[15], cutting forces in hard turning process [16], and pre-

dicting and forecasting the mechanical behavior of welded

metal alloys [17, 18].

Özkavak et al. [19] explored the use of machine learning

methods to predict mechanical properties of AA 2024

aluminum alloy after aging at various temperatures and

times. Their study employed artificial intelligence tech-

niques, including CNN, ANN, and RFR, to predict

hardness and bending strength from existing experimental

data. The results indicated successful prediction of Al alloy

properties. For Powder Metal (PM) 2024 Al alloy, the CNN

algorithm produced the best results: RMSE 0.09068, R-

Squared 0.93476, and MAE 0.06734. For Full Dense (FD)

2024 Al alloy, the CNN algorithm also excelled with

RMSE 0.08578, R-Squared 0.94166, and MAE 0.06212. In

another study, Hangai et al. [20] employed machine

learning techniques to categorize the mechanical properties

of aluminum foam, using X-ray computed tomography

(CT) images. Their research successfully achieved a clas-

sification accuracy exceeding 95% in distinguishing

aluminum foam samples with high and low compressive

strengths. Furthermore, the authors pointed out the poten-

tial for enhancing accuracy further through the

incorporation of additional training data. These findings

suggest the possibility of establishing a non-destructive

quality assurance method for aluminum foam products

through the noninvasive acquisition of product images. In

[21], Devi et al. addressed a common challenge faced by

the manufacturing industry, specifically in achieving the

desired properties of aluminum alloys. Traditional methods

involve extensive experimentation and testing, leading to

resource wastage and inconclusive outcomes. To mitigate

this, the authors proposed an algorithm employing machine

learning techniques such as linear regression (LR), artificial

neural network (ANN), and k-nearest neighbor (KNN) to

predict the mechanical properties of aluminum alloys.

Notably, the KNN algorithm demonstrated superior pre-

dictive capabilities for tensile strength and hardness values,

while ANN offers more precise results for yield strength.

This approach significantly conserved time and energy

resources in the prediction of mechanical properties for

aluminum alloys. In [22], Cao et al. measured the

mechanical properties and corrosion resistance of various

heat-treated 7N01 aluminum alloys. They introduced a

novel approach to establish the relationship between heat-

treated processing parameters and these properties using

machine learning methods. Generalized regression neural

network (GRNN), support vector machine (SVM), and

multiple linear regression (MLR) were employed for pre-

dicting mechanical properties, while GRNN and SVM,

both common machine learning methods, were used for

corrosion resistance prediction. Through the comparison of

coefficient of determination (R2) and mean absolute per-

centage error (MAPE), the study confirmed the

effectiveness of GRNN and SVM for modeling and pre-

diction. In [23], Ye et al. explored the importance of

understanding the mechanical properties and hardness for

the efficient application of friction stir welding (FSW) in

the production of Cu and Al composites. Their study

focused on the utilization of Relevance Vector Machine

(RVM), Support Vector Machine (SVM), and Least Square

Support Vector Machine (LSSVM) algorithms for hybrid

modeling of mechanical properties and hardness in FSW.

Subsequently, three modeling methods, namely hybrid

LSSVM-RVM, hybrid SVM-RVM, and hybrid SVM-

LSSVM, were applied to predict mechanical properties.

The research evaluated the models using statistical indices,

including R2, RMSE, and RMSE/ymax. Notably, the R2

values for tensile test and hardness area results were 0.9712
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and 0.9126, respectively, indicating the efficiency of the

hybrid LSSVM-RVM model in estimating mechanical and

hardness properties. In [24], Xiong et al. developed a

mechanical performance prediction model for aluminum

alloy strips, making use of the Gray Wolf Optimization

(GWO) algorithm and the Extreme Learning Machine

(ELM) algorithm. The GWO–ELM model achieved an

impressive correct rate of 100% for tensile strength, 97.5%

for yield strength, and 77.5% for elongation when con-

trolling the prediction deviation within ± 10%. The

model’s RMSE for tensile strength, yield strength, and

elongation were 5.365, 11.881, and 1.268, respectively,

showcasing its superior accuracy and stability in predicting

these critical properties of aluminum alloy strips. The study

highlighted the model’s potential to significantly improve

the production of aluminum alloy strips, offering a valuable

alternative to traditional approaches. Moreover, Li et al.

[25] explored the accelerated discovery of high-strength

aluminum alloys using machine learning, with a focus on

the Al-Zn-Mg-Cu alloy system (7xxx series). By leverag-

ing machine learning-based composition and process

optimization, they successfully identified an optimized

alloy composition with exceptional mechanical properties,

including a high ultimate tensile strength of 952 MPa and

6.3% elongation, all achieved through a cost-effective

processing route. Notably, their investigation revealed the

presence of the Al8Cu4Y phase in wrought 7xxx-T6 alloys,

forming a nanoscale network structure along sub-grain

boundaries, which is distinct from the common irregular-

shaped particles. This study demonstrated the viability of

using machine learning to expedite the discovery of 7xxx

alloys with superior mechanical performance in the past. In

the study by Altinkok [26], ANNs are employed to forecast

the mechanical properties of a-Al2O3 particulate-reinforced

Al–Si10Mg alloy composites produced through the stir

casting process. The research explored the utility of ANNs

in optimizing the production of these composites by pre-

dicting key mechanical properties. Soundararajan et al.

[27] conducted research on A413 aluminum alloy pro-

cessed through the squeeze casting route. They utilized an

ANN model alongside statistical techniques to model and

analyze the material’s mechanical properties. This

approach enables a deeper understanding of the relation-

ship between process variables and the resulting

mechanical properties, providing insights for improved

production processes. In the study by Varol, Canakci, and

Ozsahin [28], ANNs are used to model the effects of

reinforcement properties on the physical and mechanical

properties of Al2024-B4C composites manufactured

through powder metallurgy. The research aimed to eluci-

date how variations in reinforcement properties impact the

final composite’s characteristics, facilitating more

informed decisions in composite material design.

In the field of materials science and engineering, a

fundamental challenge lies in accurately predicting stress–

strain curves for various materials under diverse loading

conditions. The development of a reliable and efficient

predictive model is essential to streamline the evaluation of

material behavior, reducing the dependence on time-con-

suming and expensive experimental testing, and thereby,

helps in crucial for understanding their plastic behavior and

formability. This study aims to explore the effectiveness of

machine learning models in predicting the mechanical

behavior of Al6061-T6 aluminum alloy. The motivation

behind this investigation stems from the adaptability of

machine learning-driven methods in modeling complex

multivariate data. Three different machine learning meth-

ods were investigated in this study to forecast the strain–

stress response of the 6061-T6 aluminum alloy at various

temperature levels (25, 100, 200, and 300 �C): Gaussian

process regression (GPR), boosted trees (BST), and neural

network (NN). Real measurements were collected by

conducting uniaxial tensile testing on the as-received

material, which served as the basis for evaluating the

performance of the investigated methodologies. The

machine learning models were developed using training

data and subsequently utilized to predict strain–stress

curves. The results of the study highlighted the promising

and superior prediction capabilities of the neural network

approach compared to the boosted trees and Gaussian

process regression methods in this specific application.

Overall, this investigation demonstrates the potential of

machine learning models in accurately predicting the

mechanical behavior of the Al6061-T6 aluminum alloy.

The findings contribute to enhancing our understanding of

the alloy’s response under different temperature conditions

and emphasize the effectiveness of machine learning-dri-

ven approaches in modeling and predicting complex

material behaviors.

The following sections in this research paper will

explore the materials and methods employed, provide a

description of the machine learning models used, present

the results and their discussion, and offer general conclu-

sions. These will encompass a summary of findings, an

acknowledgment of limitations, and considerations for

future research. This comprehensive approach aims to

enhance comprehension of how machine learning has been

applied to predict the mechanical properties of Al-6061-T6

material.

Materials and Methodologies

In our study, we investigated a marketable Al6061-T6 alloy

with a thickness of 3 mm, which was obtained from

McMaster Inc. This particular alloy is known for its age-
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hardening properties. The designation ‘‘T6’’ signifies a

specific aging process [29], wherein the material is sub-

jected to a temperature of 160 �C for a duration of eighteen

hours, followed by air cooling to ambient temperature.

The primary alloying elements in Al6061-T6 are silicon

(Si) and magnesium (Mg) . However, the presence of iron

(Fe) and manganese (Mn) can result in the formation of

additional phases that do not initially exist. If manganese

and chromium (Cr) are present, iron-rich phases such as

‘‘a-(Fe, Mn)3SiAl12 or a-(Fe, Cr)3SiAl12’’ can form. In the

absence of manganese and chromium, the alloy may form

b-Fe2Si2Al9 or a-Fe3SiAl12 phases, or a combination of

both. Table 1 provides the nominal chemical composition

of Al6061-T6, outlining the constituent elements and their

respective proportions.

For the examination of the microstructure of the inter-

rupted tensile tests, we adhered to standard metallographic

sample preparation procedures. The process commenced

by cutting the sample into 10 mm2 square pieces, followed

by embedding it in a phenolic hot working resin powder

using a hydraulic-pneumatic automatic mounting press

called ‘‘TechPress 2TM.’’ Subsequently, the mounted

specimens underwent grinding, involving the use of 320,

600, and 1200 grit abrasive papers in sequential stages.

Between each step, the specimens were rotated by 90�, and

water served as a lubricant during this process. Polishing

was then conducted with a 1 lm diamond polycrystalline

suspension and later with a 0.04 lm colloidal suspension

on Spec-Cloth. This step included the contra-rotation of the

sample until achieving a clear, haze-free mirror surface,

with the assistance of BlueLube as a lubricant. To prevent

the polishing compound from embedding into the alu-

minum matrix, we exercised caution to avoid applying

excessive force during the grinding and polishing stages.

Tensile Testing

For conducting the tensile tests, an MTS Insight elec-

tromechanical testing instrument with a 30 KN load cell,

computer control, and an ‘‘LBO-series Thermocraft Lab-

Temp’’ furnace was utilized. The tensile test specimens

were fabricated using CNC machining, and their geometric

configuration is depicted in Fig. 1. To ensure consistency,

the specimens were oriented such that their primary axes

were parallel to the plate rolling direction, following the

guidelines of ASTM E2448-11 [31]. The rolling direction,

transverse direction and normal direction are referred as

RD, TD and ND, respectively (Fig. 2).

Tensile tests were conducted to investigate the

mechanical behavior of Al6061-T6 over a range of tem-

peratures from ambient temperature (25 �C) to 300 �C,

employing a strain rate of 10�3 s�1. Prior to initiating each

test, the specimens were subjected to a 30-min period

within the furnace to attain a homogenized temperature. To

preserve the microstructural morphology, the samples were

promptly water-cooled after the completion of each test. To

ensure the reproducibility of the results, each loading

scenario was repeated at least twice.

Prediction Models

In this section, we provide a concise overview of the fun-

damental principles behind the models under consideration,

namely GPR, Boosted Trees, and Neural Networks. Sub-

sequently, we introduce the effectiveness metrics utilized

to assess the performance of these investigated models.

GPR Model

Gaussian Process Regression (GPR) is a powerful kernel-

based learning algorithm utilized in modeling multivariate

data [32, 33]. It is particularly effective in revealing intri-

cate relationships between multiple process variables based

on training data, making it a valuable tool for tackling

complex nonlinear regression problems. One of GPR’s

standout features is its distribution-free learning, enabling

it to handle diverse data types that do not strictly adhere to

Gaussian distributions [34]. The GPR-based prediction

approach has demonstrated favorable performance in

diverse domains, including swarm motion prediction [35],

wind power prediction [36], and COVID-19 spread fore-

casting [37]. These applications highlight the efficacy of

GPR in accurately predicting outcomes and its versatility in

accommodating various types of data and uncertainties. In

GPR, a nonparametric Bayesian approach, the response y

of a function f at the input x is expressed as:

yi ¼ f xið Þ þ ei ðEq 1Þ

Where e�N ð0; r2
e Þ. This equation resembles the

hypothesis in ordinary linear regression, where the output

Table 1 Nominal chemical composition of Al6061 alloy [30]

Wt.% Al Mg Si Cu Cr Fe Zn Mn Ti Other each Other, total

Min 95.8 0.8 0.4 0.15 0.04 … … … … … …
Max 98.6 1.2 0.8 0.4 0.35 0.7 0.25 0.15 0.15 0.05 0.15
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consists of independent inputs x contaminated with

additive noise e.
GPR is characterized by flexibility and its ability to

provide uncertainty estimates by assuming a Gaussian

Process (GP) prior for the regression functions f(x)

[38, 39]. Given input–output data D ¼ xi; yið Þf gni¼1 and the

assumption that f ð:Þ follows a Gaussian process, the GP

prior distribution is expressed as:

f ðxÞ�GPðm xð Þ; k x; x0ð Þ ðEq 2Þ

The GP is entirely defined by its mean function, denoted

as mðxÞ, and its kernel or covariance function, represented

as kðx; x0Þ.
m xð Þ ¼ E½f ðxÞ� ðEq 3Þ

k x; x0ð Þ ¼ E f xð Þ � m xð Þð Þ f x0ð Þ � m x0ð Þð Þ½ � ðEq 4Þ

These equations highlight that the mean and kernel

functions can be adjusted to tailor the regression process to

model the evolution of the specific physical process under

consideration. The kernel function, in particular, plays a

crucial role in describing the data structure and capturing

the correlations between data points in a dataset. Various

kernels are employed in GPR, and the most commonly

used ones include the Radial Basis Function (RBF) kernel,

the Matérn kernel, and the Polynomial kernel. Additional

information regarding the GPR model can be referenced in

[40, 41].

Several machine learning methods, including GPR and

ensemble models, involve various hyperparameters, such

as kernel types in GPR, which significantly affect model

performance [40]. To determine the best hyperparameter

values, common optimization techniques like grid search,Fig. 1 Tensile testing samples geometry

Fig. 2 A schematic representation depicting the concept of the Boosted Tree Regression approach
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random search, and Bayesian Optimization (BO) are

employed [41]. Grid search evaluates hyperparameter set-

tings at predefined points within the search space, while

random search explores hyperparameter combinations

randomly, albeit without a guarantee of the best outcome.

In this study, Bayesian Optimization, an efficient global

optimization method based on Gaussian processes and

Bayesian inference, was used. Bayesian Optimization

reduces the time needed to find optimal parameters by

considering past evaluations when selecting the next set of

hyperparameters to evaluate. Unlike grid search, BO can

achieve optimal hyperparameters with fewer iterations

[42]. BO will be utilized to optimize hyperparameters for

the following methods: GPR, Boosted Trees, and Neural

Networks.

Boosted Tree Technique

Now, we discuss another important data-driven model

called Boosted tree (BST), which is developed based on the

statistical learning theory. The key concept of this

approach is related to its ability to optimize the prediction

accuracy of conventional regression techniques via an

adaptive combination of weak predictors [43]. The basic

idea of the Boosted Trees algorithm is to combine multiple

decision trees to create a strong predictive model [43, 44].

It does this by sequentially training decision trees on the

errors made by the previous ones (Fig. 3). Each new tree

focuses on the residuals of the ensemble, which allows the

model to improve its accuracy over time. The final pre-

diction is a weighted sum of the predictions from all the

trees, with more weight given to the trees that perform

better. This iterative process of boosting enhances the

model’s ability to handle complex relationships in the data

and is widely used in both classification and regression

tasks. Using an aggregate model, smaller errors can be

achieved by the BST compared to those acquired by single

models [35]. When compared to other ensemble techniques

like stacking, bagging, and model averaging, boosting

stands out for its unique characteristic of sequentiality

[43, 45].

Neural Network

In the context of regression, neural networks serve as

powerful tools for approximating and modeling complex

relationships between input variables and continuous out-

put values [46]. This approach offers a versatile and data-

driven solution for tasks like predicting prices, estimating

values, or forecasting outcomes. Neural networks, with

their ability to learn intricate patterns and nonlinear asso-

ciations within data, can significantly enhance our capacity

to make accurate numerical predictions. Within this study,

we harnessed a trilayered neural network enhanced by

three hidden layers to execute predictive tasks [47]. This

architecture affords the capacity to capture more intricate

relationships between input and output variables compared

to simpler designs, such as single-layer perceptrons or

multilayer perceptrons featuring fewer hidden layers.

Nonetheless, the adoption of a more intricate model

heightens the potential for overfitting, underscoring the

significance of employing regularization techniques like

dropout or weight decay. A trilayered neural network, also

known as a three-layer neural network or a feedforward

neural network with a single hidden layer, is a fundamental

architecture in artificial neural networks and machine

learning. It consists of three primary layers, as shown in

Fig. 3.

Input Layer: The input layer is the first layer of the

neural network and is responsible for receiving the raw

input data or features. Each neuron in this layer represents

a specific feature or input variable, and these neurons pass

the input values to the subsequent layer.

Hidden Layer: The hidden layer is an intermediate layer

between the input and output layers. It plays a crucial role

in learning and extracting complex patterns and represen-

tations from the input data. The number of neurons in the

hidden layer is a user-defined hyperparameter, and it

affects the network’s ability to capture complex relation-

ships within the data. The activation functions applied to

the neurons in this layer introduce nonlinearity, which

allows the network to model nonlinear relationships in the

data.

Output Layer: The output layer is the final layer of the

neural network and produces the network’s predictions or

outputs. The number of neurons in this layer depends on

the nature of the task; for instance, in a binary classification

problem, there might be one neuron for each class, while in

a regression problem, there may be just one neuron for a

single numeric prediction. The output layer typicallyFig. 3 Schematic presentation of ANN Structure
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employs an activation function suited to the task, such as a

sigmoid function for binary classification or a linear

function for regression.

The input nodes in the input layer transfer the data to the

hidden layer nodes using interconnected links. The inputs

are multiplied with weights and passed to the next nodes.

In Eq 5, H represents the size of the hidden layer, {Vih,

i = 0,1,2,..,p, h = 1,2,.,H} denotes the synaptic weights

connecting the hidden layer to the p-sized input, and {wh,

h = 0,1,2,.,H} represents the synaptic weights connecting

the output layer to the hidden layer. The outcome of the

ANN, given an input vector (x_(1),...,x_p), is represented

by Eq 5.

O ¼ Wo þ
XH

h¼1

whg voh þ
XP

i¼1

vthxi

 !
ðEq 5Þ

Prediction Framework

In this study, a general approach was employed to predict

the strain–stress curve (Fig. 4). The data were initially

divided into two parts: a training set (70%) and a testing set

(30%). The prediction models were constructed using the

training set, and a fivefold cross-validation strategy was

adopted during the training process to mitigate the risk of

overfitting. This approach ensured that the models were

trained on a diverse range of data and enabled the evalu-

ation of their performance on unseen test data. The

forecasting framework encompasses two primary stages:

model construction and model forecasting. Initially, data

preprocessing is conducted, involving the removal of out-

liers and the handling of missing values. While the dataset

employed in this study is devoid of any missing values, it is

worth noting that missing data can arise during the col-

lection of experimental samples due to various factors,

such as sensor malfunctions or degradation. The literature

offers a range of methodologies for imputing missing data

[48]. The model is trained using the training data and then

applied to predict the future trends in the strain–stress

curve during the testing phase.

To assess the accuracy of the predictions in this study,

four statistical metrics were utilized: coefficient of deter-

mination (R2), mean absolute percentage error (MAPE),

mean absolute error (MAE), and root mean square error

(RMSE). These metrics provide a comprehensive evalua-

tion of the prediction quality, taking into account both the

magnitude and direction of the errors. By employing these

metrics, a comprehensive assessment of the predictive

performance can be obtained, aiding in the determination

of the reliability and effectiveness of the models.

R2 ¼
Pn

t¼1 yt � yð Þ � ŷt � yð Þ½ �2
Pn

t¼1 yt � yð Þ2�
Pn

t¼1 ŷt � yð Þ2
ðEq 6Þ

RMSE =

ffiffiffi
1

n

r Xn

t¼1
yt � ŷtð Þ2 ðEq 7Þ

MAE =

Pn
t¼1 yt � ytj j

n
ðEq 8Þ

MAPE =
100

n

Xn

t¼1

yt � ŷt
yt

����

����% ðEq 9Þ

Fig. 4 Schematic drawing of the adopted prediction framework
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where yt is the actual stress, byt as its prediction, and n as

the number of samples. A good quality of prediction is

indicated by lower values of RMSE, MAE, and MAPE and

R2 value near 1. These metrics serve as measures of

accuracy and precision, with lower values representing a

closer agreement between the predicted and actual values.

By achieving lower RMSE, MAE, and MAPE values and

R2 values near 1, the predictive models demonstrate a

higher level of performance and reliability in capturing the

true characteristics of the data.

Results and Discussion

Fractography Observations

Scanning electron microscopy (SEM) was utilized to

examine the fracture surfaces of specimens subjected to

tensile testing at ambient temperature (25 �C), 100, 200

and 300 �C under a strain rate of 10�3 s�1. Figure 5 dis-

plays the SEM fractographs, revealing the presence of

small dimples and coalesced micro-voids, indicative of a

ductile fracture mechanism in Al6061-T6 [49]. Interest-

ingly, Fig. 5a illustrates the occurrence of iron-rich phases

at the bottom of certain micro-voids, highlighted by white

circles [50]. These microscopic dimples exhibit variations

in size and depth, with the average dimensions found to be

smaller at 300 �C compared to 25, 100 and 200 �C. It

should be noted that the depth of these dimples can be

roughly correlated with the ductility of the metallic alloy

[51]. Specifically, specimens tested at 25, 100 and 200 �C
demonstrate greater strain to failure, accompanied by rel-

atively deeper microscopic dimples (Fig. 5a-c).

Conversely, specimens tested at 300 �C exhibit reduced

strain to failure and display shallower microscopic dimples.

A previous study by [52] demonstrated that at temperatures

between 25 and 200 �C under a strain rate of 10�3 s�1,

crack initiation is attributed to second phase particles,

whereas at 300 �C, crack initiation primarily occurs

through interfacial decohesion (Fig. 5d). This finding

explains the absence of second phase particles at the bot-

tom of the microscopic dimples at 300 �C.

To go deeply into the investigation of the damage

mechanisms that occurs at various temperatures for our

material under investigation, interrupted tests were per-

formed. The examination of the microstructure of

interrupted tensile tested specimens serves as a critical step

in understanding the behavior and performance of

Fig. 5 SEM fractographs

observations of tensile tested

samples, (a) at ambient

temperature (25 �C), and (b) at

100 �C, (c) at 200 �C and (d) at

300 �C
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materials under mechanical stress. This examination aids in

identifying microstructural features such as dislocations,

grain boundaries, and defects, which play a pivotal role in a

material’s strength and ductility. It provides essential

information on the mechanisms of material deformation

and fracture, helping to elucidate the root causes of failure

and the potential for material improvement. Moreover,

studying the microstructure after interrupted tensile testing

enables the assessment of the effect of variables like tem-

perature and loading rate on material behavior. To discern

the specific damage mechanisms governing the fracture

characteristics of Al6061-T6, we tracked the initiation and

progression of cracks in specimens subjected to loads at

both 200 and 300 �C. As reported previously by Thomson

and Hancock, [53], the plastic deformation of ductile

metals and their alloys is constrained by the rates of void

nucleation, growth, and their subsequent coalescence.

Figure 6 exhibits SEM micrographs of a specimen

extracted from an interrupted test conducted at the incep-

tion of strain leading to failure. Figure 6a and b shows SEM

micrographs of samples tested at a strain rate of 10�3 s�1

and a temperature of 200 �C. Notably, the micrographs

reveal the presence of cracks, predominantly situated

between fractured second-phase particles or visibly iron-

rich phases represented by white particles. These micro-

voids were discernible in both the RD-ND and RD-TD

planes but predominantly in the RD-ND plane. A similar

phenomenon was previously documented by [50] in tests

conducted at room temperature. It is essential to recognize

that the iron-rich phase particles act as stress concentration

sites that precipitate crack initiation, as evidenced by the

void growth parallel to the loading direction, aligning with

previous research [54]. These observations offer insights

into the presence of iron-rich phases at the base of the

observed microvoids on the fractograph surfaces in Fig. 5.

Conversely, in Fig. 6c and d, SEM micrographs display

samples tested at a strain rate of 10�3 s�1 and a temperature

of 300 �C. These micrographs distinctly illustrate the frac-

ture progression in the necked region, characterized by

parallel crack propagation that ultimately converges within

localized shear bands formed in the thinned ligament

between adjacent voids, as evident in Fig. 6c. Notably,

Fig. 6d highlights the transverse direction (TD) as the path

of crack propagation. In contrast, within the RD-ND plane,

numerous cracks are distributed throughout the micrograph,

with slight propagation along the rolling direction (RD) and

subsequent coalescence within localized shear bands, as

demonstrated in Fig. 6c. This pattern of crack propagation

Fig. 6 SEM Analysis of

Al6061-T6 Uniaxial Tensile

Tests at 10�3 s�1 and: 200 �C:

in (a) RD-ND and (b) RD-TD

Planes, and at 300 �C: in (c)

TD-RD and (d) ND-RD Planes
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parallel to the transverse direction (TD) and the coalescence

of cracks in the RD-ND plane results in the emergence of a

macroscopic crack advancing at an angle relative to the

normal direction (ND) within the RD-ND plane, ultimately

culminating in the catastrophic failure of the sample. It is

worth noting that the intermetallic phase particles remain

unfractured, and the cracks tend to develop around these

particles. At 300 �C, crack initiation is primarily attributed

to interfacial decohesion, in contrast to the mechanisms

observed at 200 �C and room temperature (RT).

Forecasting Results

Stress–Strain Data

In this investigation, the behavior of the Al6061-T6 alloy

was examined by conducting uniaxial tensile testing at

various temperatures, namely 25, 100, 200 and 300 �C
under a constant deformation rate of 10�3 s�1. Figure 7a

presents the stress–strain data curves of the above-men-

tioned conditions; from this figure, it can be observed that

the ultimate tensile strength is decreasing with increasing

temperature, indicating the presence of a temperature

sensitivity effect [52]. Also, Fig. 7a shows the presence of

work hardening and work softening for the tensile tests

ranging from ambient temperature to 200 �C; however, at

300 �C, there is only work softening effect, which might be

due to creep phenomena [29].

To further understand the results provided by the tensile

tests data, stress data distribution boxplot is established in

Fig. 7b, and a stress data distribution boxplot is a graphical

representation that offers valuable insights into the statis-

tical distribution of stress values within a dataset. It serves

as a concise summary of key characteristics of the stress

Fig. 7 (a) Strain–stress curves at different temperature levels, and (b) Stress data distribution of the as-received material

Table 2 Range of hyperparameter search and optimized hyperparameters using the Bayesian optimization algorithm

Model Hyperparameter Search Range Optimized Hyperparameters

GPR Sigma: 0.0001–899 Sigma: 0.13811

Basis function: Linear Basis function: Linear

Kernel function: Squared Exponential Kernel function: Squared Exponential

BST Number of learners: 10–500 Number of learners: 47

Minimum leaf size: 1–795 Minimum leaf size: 1

Number of predictors to sample: 1–2 Number of predictors to sample: 2

Learning rate:0.1 Learning rate:0.1

TNN Activation: ReLU, Tanh, Sigmoid, Activation: Tanh

Regularization Strength: 6.28e�09–62.89 Regularization Strength: 0.00156

First Layer size: 1–300 First Layer size: 1

Second Layer size: 1–300 Second Layer size: 11

Third Layer size: 1–300 Third Layer size: 2
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data, including its central tendency, variability, potential

outliers, and skewness. The central tendency is represented

by the median, located at the center of the box, while the

size of the box (interquartile range) indicates the data’s

spread. Outliers, which significantly deviate from the bulk

of the data, are often displayed outside the whiskers of the

boxplot. Additionally, the orientation of the boxplot can

reveal whether the data are skewed in one direction.

Boxplots are excellent for comparing stress distributions

between different groups or conditions, making them a

powerful tool for quickly grasping the main features of the

data and identifying areas of interest or concern within the

stress dataset.

Stress–Strain Modeling

The dataset was initially split into two segments: a training

set, which constituted 70% of the data, and a testing set,

encompassing the remaining 30%. For the development of

the prediction models, the training set was utilized. A

fivefold cross-validation approach was applied to train the

models under investigation. Optimal parameters for

Gaussian process regression (GPR), boosted trees (BST),

and the trilayered NN techniques were obtained during the

training phase, using the Bayesian optimization method to

minimize mean absolute error. The computed hyperpa-

rameter values for the considered models through Bayesian

optimization are presented in Table 2.

Figure 8a-d presents the strain–stress values of the base

material; both actual and predicted, using the BST, neural

network (NN), and GPR models trained with the training

data at temperatures of 25, 100, 200, and 300 �C. The

results depicted in Fig. 8 demonstrate the effective pre-

dictive capability of all three models when trained with the

provided dataset.

Fig. 8 Prediction results of stress–strain curves of base material utilizing the three methods: at (a) 25 �C, (b) 100 �C, (c) 200 �C and (d) 300 �C
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Stress–Strain Forecasting

The prediction performance of the trained models using

new testing data was evaluated in this section. Figure 9a-b

displays the actual stress–strain curves along with the

corresponding predictions obtained from the boosted trees

(BST), neural network (NN), and Gaussian process

regression (GPR) models for the material under investi-

gation. It can be observed that both the BST and NN

models exhibit satisfactory prediction performance. How-

ever, it is evident that the GPR model does not provide

acceptable prediction accuracy.

Table 3 provides a comprehensive overview of the

evaluation metrics for predicting the mechanical behavior

of Al6061-T6 aluminum alloy through tensile testing at

various temperatures (T = 25 �C, T = 100 �C,

T = 200 �C, and T = 300 �C) using three distinct fore-

casting methods: Binary Search Tree (BST), Neural

Network (NN), and Gaussian Process Regression (GPR).

At T = 25 �C, BST exhibits decent accuracy with a low

RMSE of 0.6307 and a MAE of 0.4811. However, NN and

GPR outperform BST with significantly lower RMSE and

MAE values (0.2863 and 0.2266, respectively) and higher

R-squared (R2) values of 0.9997, indicating strong pre-

dictive capabilities. Moreover, all methods maintain low

Mean Absolute Percentage Error (MAPE) values, con-

firming their precision. As the temperature rises to

T = 100 �C, BST’s performance improves but lags behind

NN and GPR. At this point, NN and GPR continue to

showcase high accuracy with low RMSE and MAE values,

along with substantial R2 values. However, the challenges

intensify at T = 200 �C, where BST struggles significantly,

revealing a high RMSE and MAE and a lower R2 value. In

contrast, NN and GPR maintain their accuracy, although R2

values slightly decrease. All methods, nonetheless,

demonstrate increased MAPE values, reflecting the com-

plexity of forecasting at high temperatures. Finally, at

T = 300 �C, BST’s limitations become evident with high

Fig. 9 Prediction results of stress–strain curves of the base material utilizing three models based on testing data under (a) 25 �C, (b) 100 �C, (c)

200 �C, and (d) 300 �C
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RMSE and MAE values, while NN and GPR sustain their

precision. NN stands out with the lowest RMSE and MAE,

indicating its superior performance in capturing material

behavior under extreme conditions. GPR also performs

admirably with low RMSE and MAE values and a high R2

value. Importantly, both NN and GPR maintain low MAPE

values, highlighting their proficiency in delivering accurate

forecasts even in challenging scenarios. In summary, the

results emphasize that machine learning methods, particu-

larly NN and GPR, excel in accurately predicting the

mechanical behavior of Al6061-T6 aluminum alloy, espe-

cially under varying and extreme temperatures.

Figure 10 presents the boxplots showing the prediction

errors of the BST, NN, and GPR models for Al6061T6

aluminum alloy at temperatures of 25, 100, 200, and

300 �C. The boxplots reveal that the prediction errors of

the NN and GPR models are concentrated around zero,

indicating their effectiveness in accurately capturing the

expected patterns in the strain–stress data across different

temperature conditions. In contrast, the prediction errors of

the BST model exhibit significant deviations from zero,

suggesting challenges in accurately representing the vari-

ation in strain–stress data. These boxplots further support

the superior performance of the NN and GPR models

compared to the BST model in predicting the mechanical

behavior of the material.

Based on the results presented, it can be concluded that

there is no one approach that consistently outperforms the

others in predicting strain–stress curves at different tem-

perature levels. Table 4 provides a comprehensive

overview of the performance of each approach. From the

computed evaluation scores, it is evident that the NN-based

method stands out as the most effective approach for pre-

dicting strain–stress curves of the aluminum alloys.

Conclusion

In conclusion, this research aimed to investigate and

improve the prediction of stress–strain behavior for the

Al6061-T6 as-received material using machine learning

methods. The study compared the effectiveness of the

bagged trees (BST), neural network (NN), and Gaussian

process regression (GPR) models in predicting the

mechanical properties of the material at different

temperatures.

The results indicated that the NN and GPR models

outperformed the BST model in terms of prediction accu-

racy, as evidenced by lower prediction errors. These

models demonstrated their ability to capture the future

trends in strain–stress data across various temperature

levels. In contrast, the BST model exhibited limitations in

accurately capturing the variation in strain–stress data.

Based on the evaluation scores computed, the NN-based

method emerged as the most effective approach for pre-

dicting the stress–strain curves of the Al6061-T6 alloy. It

consistently yielded superior performance compared to the

other models considered in this study.

The failure analysis of Al 6061 T6 material revealed its

ductile nature, as seen in coalesced micro-voids and

microscopic dimples on fracture surfaces. Examining the

microstructure during interrupted tests identified inter-

metallic phase particles as key sites for crack initiation.

Initiation mechanisms varied with temperature; particle

fracture dominated at temperatures up to 200 �C, while

interfacial decohesion prevailed at 300 �C. As deformation

continued, cracks propagated perpendicularly to the rolling

direction, coalescing in the RD-ND plane, ultimately

causing a macroscopic crack to propagate at an angle from

the normal direction, leading to catastrophic failure. This

analysis enhances our understanding of the material’s

failure mechanisms, crucial for enhancing its reliability and

performance across diverse applications.

As for future work, it is recommended to explore other

machine learning-driven prediction methods such as arti-

ficial neural networks (ANN) and investigate the

applicability of Gaussian process regression for predicting

the material behavior of different metal alloys in their as-

received form and when subjected to various welding

techniques. Additionally, evaluating the performance of

BST, NN, and GPR models for predicting material

behavior under different temperatures and strain rates is

essential. Incorporating deep learning models, known for

Table 3 Evaluation metrics of forecasting using test data

RMSE MAE R2 MAPE

T = 25 �C
BST 0.6307 0.4811 0.9986 0.1320

NN 0.2863 0.2266 0.9997 0.0636

GPR 0.2863 0.2266 0.9997 0.0636

T = 100 �C
BST 0.5487 0.3808 0.9992 0.1195

NN 0.4624 0.2869 0.9995 0.0924

GPR 0.4624 0.2869 0.9995 0.0924

T = 200 �C
BST 13.8453 8.8499 0.7045 3.7795

NN 0.6926 0.3466 0.9993 0.1630

GPR 12.7425 8.4275 0.7497 3.6291

T = 300 �C
BST 6.2365 4.9929 0.8936 3.4890

NN 1.4385 0.5014 0.9943 0.5313

GPR 1.3544 0.3246 0.9950 0.3846
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efficient time-series data modeling, should also be con-

sidered in future research endeavors.
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