
Results in Engineering 20 (2023) 101428

Contents lists available at ScienceDirect

Results in Engineering

journal homepage: www.sciencedirect.com/journal/results-in-engineering

Research paper

Energy consumption prediction in water treatment plants using deep 

learning with data augmentation
Fouzi Harrou a,∗, Abdelkader Dairi b, Abdelhakim Dorbane c, Ying Sun a

a King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 
23955-6900, Saudi Arabia
b Computer Science Department, University of Science and Technology of Oran-Mohamed Boudiaf (USTO-MB), El Mnaouar, BP 1505, Oran 31000, Algeria
c Smart Structures Laboratory (SSL), Department of Mechanical Engineering, Belhadj Bouchaib University of Ain Temouchent, Ain Temouchent, Algeria

A R T I C L E I N F O A B S T R A C T

Keywords:

Deep learning
Data augmentation
Features selection
Energy consumption
Wastewater treatment plants
Data-based methods

Wastewater treatment plants (WWTPs) are energy-intensive facilities that play a critical role in meeting stringent 
effluent quality regulations. Accurate prediction of energy consumption in WWTPs is essential for cost savings, 
process optimization, regulatory compliance, and reducing carbon footprint. This paper introduces an efficient 
approach for predicting energy consumption in WWTPs, leveraging deep learning models, data augmentation, 
and feature selection. Specifically, Spline Cubic interpolation enriches the dataset, while the Random Forest 
model identifies important features. The study investigates the impact of lagged data to capture temporal 
dependencies. Comparative analysis of five deep learning models on original and augmented datasets from 
Melbourne WWTP demonstrates substantial performance improvement with augmented data. Incorporating 
lagged energy consumption data further enhances accuracy, providing valuable insights for effective energy 
management. Notably, the Long Short-Term Memory (LSTM) and Bidirectional Gated Recurrent Unit (BiGRU) 
models achieve Mean Absolute Percentage Error (MAPE) values of 1.36% and 1.436%, outperforming state-of-
the-art methods.
1. Introduction

Wastewater treatment plants (WWTPs) are vital infrastructure com-
ponents responsible for treating and purifying wastewater before its dis-
charge into the environment [1,2]. However, the operation of WWTPs 
entails substantial energy consumption due to the various processes in-
volved, such as aeration, pumping, and sludge treatment [3,4]. Accurate 
prediction of energy consumption in WWTPs is of utmost importance as 
it enables cost savings, facilitates process optimization, ensures regula-
tory compliance, and supports sustainability goals by reducing carbon 
footprint.

Over the past decade, the use of machine learning techniques in op-
timizing the control of WWTPs and predicting their key features has 
gained significant attention [5–8]. One of the main motivations for 
utilizing machine learning methods is their flexibility, as they only re-
quire historical data for construction, unlike model-based approaches 
that often rely on physical knowledge and can be time-consuming to 
develop. By leveraging machine learning, WWTP operators can make 
accurate predictions and optimize the control strategies based on his-
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torical data, leading to improved energy efficiency and cost savings. A 
wide range of machine learning techniques have been explored and ap-
plied to address this prediction problem and provide valuable insights 
into energy usage in WWTPs [9–11]. For instance, Ramli and Abdul 
Hamid conducted a study on data-based modeling of a wastewater 
treatment plant using machine learning methods [12]. They compared 
techniques such as Artificial Neural Network (ANN), K-Nearest Neigh-
bors (KNN), Support Vector Regression (SVR), and Linear Regression 
for energy consumption prediction. Energy consumption data was col-
lected from the electrical bills of Tenaga National Berhad (TNB) over 
a period from March 2011 to February 2015. The study found that 
ANN produced the most accurate predictions compared to the other 
machine learning methods. Recently, in [13], Nnaji et al. used ANFIS 
(Adaptive Neuro-Fuzzy Inference System) and RSM (Response Surface 
Methodology) to predict coagulation-flocculation parameters for color 
and COD (Chemical Oxygen Demand) removal, as well as SVI (Sludge 
Volume Index) in dye wastewater treatment at 298 K. ANFIS produced 
higher averaged R2 values (0.9842 for color removal, 0.9752 for COD 
removal, and 0.9940 for SVI) and lower averaged RMSE values (0.2317 
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for color removal, 0.0069 for COD removal, and 0.1889 for SVI) com-
pared to RSM. In [14], Zhang et al. presented an energy consumption 
model for WWTPs using the random forest (RF) algorithm. The study 
incorporated a non-numerical variable, discharge standard, and uti-
lized 2387 data records from the China Urban Drainage Yearbook. The 
model aimed to predict energy consumption after upgrading discharge 
standards and contribute to understanding the water-energy nexus in 
WWTPs. The model achieved a correlation coefficient (𝑅2) of 0.702. 
However, the study did not explore the influence of local climate and 
treatment technologies on energy consumption. Using logistic regres-
sion, Boncescu et al. conducted a study on energy consumption in a 
Romanian wastewater treatment plant [15]. The study utilized data 
from 403 random samples collected over two years and included pa-
rameters such as flow rate, BOD (Biochemical Oxygen Demand), TSS 
(Total Suspended Solids), COD (Chemical Oxygen Demand), and overall 
energy consumption. The logistic regression model achieved accuracy 
ranging from 80% to 87% for different parameters compared to ac-
tual values. However, the model did not consider all the parameters 
influencing water quality in the wastewater treatment plant. In [16], 
Torregrossa et al. proposed a methodology for daily benchmarking in 
WWTPs to achieve energy savings. They utilized the Energy Online 
System (EOS) to calculate Key Performance Indicators (KPIs) consider-
ing pollutant load, enabling comparisons between different plants. The 
study evaluated the performance of SVR, ANN, and RF algorithms using 
data from the Solingen-Burg WWTP, serving a population of 120,000. 
Among the three algorithms, RF demonstrated the highest efficiency, 
with an 𝑅2 value of 0.72 in validation and 0.71 in testing. However, the 
study had limitations in data availability, which may affect the general-
izability of the findings. In another study, Torregrossa et al. presented 
a machine-learning approach for energy cost modeling in WWTPs [17]. 
Specifically, they focused on a database of 279 WWTPs in northwest Eu-
rope and employed NN and RF algorithms to develop cost functions and 
assess their efficiency. This methodology demonstrated improved per-
formance compared to traditional techniques, establishing it as a valu-
able tool for energy cost modeling. However, the study acknowledged 
this methodology’s complexity and time-consuming nature and the re-
quirement for a significant amount of data for validation. Qiao and 
Zhou proposed a density peaks-based adaptive fuzzy neural network 
(DP-AFNN) for modeling energy consumption (EC) and effluent quality 
(EQ) in WWTPs [18]. They used the improved Levenberg-Marquardt 
method to optimize the parameters of the fuzzy neural network, and 
results showed that the DP-AFNN achieved better prediction accuracy, 
outperforming existing methods for modeling EC and EQ in WWTPs. 
Oulebsir et al. [19] proposed a methodology for optimizing EC in 
WWTPs using an ANN. The model achieved a coefficient of determina-
tion ranging from 90% to 92% during training and 74% to 82% during 
testing, demonstrating its effectiveness in predicting daily EC and of-
fering potential for improved energy efficiency in WWTP operations. 
Adibimanesh et al. recently proposed an intelligent tool for optimizing 
EC in WWTPs, specifically focusing on sewage sludge incineration [20]. 
They used machine learning algorithms, including ANN, Parallel models 
(GBM, RF, and SVM), and Chained models. In the parallel model, the 
multi-output problem was divided into several single-output models, 
and the accuracy of GBM, RF, and SVM algorithms was tested to select 
the most accurate model. Simulation results from ASPEN PLUS, based 
on real data from a wastewater treatment plant in Gdynia (Poland), 
were used for validation. The ML models achieved 𝑅2 values of 0.85, 
0.91, and 0.94 for Parallel models, Chained models, and ANN, respec-
tively, demonstrating the accuracy of the proposed tool.

In recent years, deep learning models have emerged as powerful 
tools for modeling complex relationships and capturing temporal dy-
namics in various domains. These models have shown promising results 
in time-series prediction tasks. Therefore, they hold significant potential 
for accurate energy consumption prediction in WWTPs. Bagherzadeh et 
al. conducted a study on predicting EC in the East Melbourne WWTP 
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using machine learning techniques [21]. They examined the impact of 
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wastewater, hydraulic, and climate-based parameters on daily EC by 
analyzing data collected over six years (2014-2019). The study em-
ployed various machine learning models for EC prediction, including 
ANN, RF, Gradient Boosting Machine (GBM), and Recurrent Neural 
Network (RNN), where the GBM demonstrates the best performance. 
In [22], Das et al. conducted a study to predict EC in WWTPs using 
four deep learning models, namely Artificial Neural Network (ANN), 
Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), 
and Gated Recurrent Unit (GRU). The results indicated that the GRU 
model outperformed the other models. In [23], a transfer learning ap-
proach is adopted to forecast EC in WWTPs based on deep learning 
models, including Long LSTMs, GRUs, and uni-dimensional Convolu-
tional Neural Networks (CNNs). The CNN-based models demonstrated 
superior performance, outperforming LSTMs and GRUs, with the best 
model achieving an MAE of 630 kWh and an RMSE of 690 kWh. Yusuf 
et al. [24] compared the performance of Auto-Regressive Integrated 
Moving Average (ARIMA) and LSTM for electric load forecasting in wa-
ter utility sites. LSTM showed significant improvements over ARIMA 
in terms of RMSE, with reductions of 75.54% for WWTPs and 17.33% 
for pumping stations. Similarly, LSTM achieved substantial decreases in 
MAPE, with reductions of 78.46% for water treatment plants and 9.9% 
for pumping stations, compared to ARIMA.

The limited availability of energy consumption time-series data in 
WWTPs poses significant challenges for accurate predictions. Tradi-
tional machine learning and deep learning models require substantial 
training data to achieve optimal performance. However, the scarcity 
of long-term records and the sparse nature of daily data can lead to 
overfitting or poor generalization of the models, especially deep learn-
ing models known for capturing complex temporal dependencies. Data 
augmentation techniques offer a promising solution to enhance the 
learning capabilities of these models. While data augmentation has 
shown effectiveness in fields like computer vision [25,26], its appli-
cation in time-series data tasks, such as time-series classification, has 
been relatively less common [27,28]. Recent research has developed 
data augmentation methods tailored to time-series data, which have 
shown promise in various domains, including medical data, pollution 
prediction, and wearable sensor data [29–31], and these methods have 
shown promising results in various fields, including medical data [32], 
pollution prediction [27], and wearable sensor data [33].

In the context of WWTPs, the utilization of deep learning for time-
series prediction faces the common challenge of limited large time-
series datasets [34]. Data scarcity hampers the use of machine learning 
in designing, optimizing, and controlling WWTPs [35]. Collecting ex-
perimental data is costly and challenging, and the dynamic nature of 
wastewater treatment processes compounds these issues. The resulting 
insufficient training data can hinder the performance of deep learning 
models, which rely on large datasets for improved generalization [34]. 
Addressing data scarcity is crucial for enhancing the accuracy and reli-
ability of time-series prediction models for WWTPs. This paper makes 
a threefold contribution. Firstly, it explores the application of various 
deep learning models, including RNN, LSTM, GRU, BiLSTM, and BiGRU, 
for energy consumption prediction in WWTPs. Through a comprehen-
sive evaluation, we provide insights into their effectiveness in capturing 
temporal dependencies and improving prediction accuracy. Secondly, 
the paper proposes an efficient approach to predict energy consumption 
in WWTPs by employing data augmentation, specifically using cubic 
spline interpolation, to address the limited size of WWTP time-series 
datasets. By generating synthetic data points between observed values, 
the dataset is expanded, temporal resolution is enhanced, and the gen-
eralization capabilities of the predictive models are improved. The ap-
proach’s efficacy is demonstrated by evaluating the performance of the 
deep learning models with and without data augmentation. Lastly, the 
paper investigates the impact of incorporating lagged energy consump-
tion data into the prediction models. By considering historical energy 
consumption information, it aims to capture the temporal dynamics and 

dependencies influencing current energy consumption patterns. This 
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Fig. 1. A schematic illustration of an unrolled RNN architecture. This unrolling
visually elucidates the temporal dynamics and connections within the network, 
enabling a more comprehensive understanding of its inner workings.

analysis provides valuable insights into the benefits of incorporating 
lagged data for improved prediction performance. These contributions 
are validated using real-world WWTP data from the Melbourne WWTP, 
containing multivariate variables collected over a five-year period.

The paper follows a structured approach to investigate using deep 
learning models with data augmentation for energy consumption pre-
diction in WWTPs. Section 2 briefly introduces the deep learning models 
employed in the study and explains the data augmentation technique 
using cubic spline methods. Section 3 presents the proposed predic-
tive framework that integrates deep learning models with data aug-
mentation to enhance the accuracy of energy consumption predictions. 
Section 4 is dedicated to presenting the datasets used in the study 
and discussing the results obtained from the proposed framework. A 
comparison with state-of-the-art methods on the same dataset is also 
provided. Finally, in Section 5, the paper summarizes the findings and 
outlines future research directions in this domain.

2. Material and methods

2.1. RNN model

While regular feedforward neural networks have proven successful 
in various domains, they have limitations when modeling sequential 
data and capturing time dependencies. In these networks, data flow 
transformations occur solely in one direction through hidden layers, 
with the output influenced solely by the current input. This lack of 
memory hinders their ability to effectively model data sequencing and 
capture temporal dependencies within historical data.

RNN have proven to be effective models for capturing temporal 
dependencies in sequential data, making them well-suited for energy 
consumption prediction in WWTPs. RNNs process input sequences step-
by-step while maintaining a hidden state that retains information from 
previous steps. This enables the model to leverage historical context and 
capture long-term dependencies in energy consumption patterns.

The basic concept of an RNN revolves around considering the in-
fluence of past information when generating the output [36]. Unlike 
traditional feedforward neural networks, which process inputs indepen-
dently, RNNs introduce the concept of cells that retain the memory of 
previous inputs and utilize this information to influence the output. In 
a basic RNN model, the hidden state at each time step is updated based 
on the current input and the previous hidden state (Fig. 1). This allows 
the network to capture temporal dependencies and model sequential 
data effectively. The update equation for a basic RNN can be expressed 
as:

ℎ𝑡 = 𝜎
(
𝑊 [ℎ𝑡−1, 𝑥𝑡] + 𝑏

)
. (1)

where 𝑥𝑡 represents the input at time step 𝑡, ℎ𝑡 denotes the hidden state 
at time step 𝑡, 𝑊 represents the weight matrix, and 𝑏 represents the bias 
vector. The 𝜎 function is usually a non-linear activation function such 
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as the sigmoid or hyperbolic tangent function.
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Fig. 2. Structure of an LSTM unit, highlighting its intricate architecture for 
capturing long-range dependencies in sequential data. It showcases the three 
LSTM gates (input, forget, and output), along with candidate memory cells and 
their content.

In the context of energy consumption prediction in WWTPs, RNNs 
can leverage their ability to retain historical information to capture pat-
terns and trends in energy consumption data over time. The recurrent 
nature of RNNs allows them to model the sequential nature of the en-
ergy consumption data, considering both short-term fluctuations and 
long-term dependencies. By learning from past inputs, the RNN can 
capture the temporal dynamics inherent in the data, enabling accurate 
prediction of energy consumption in WWTPs. However, one limitation 
of basic RNNs is that they may suffer from the vanishing or exploding 
gradient problem, where the gradients used for updating the weights ei-
ther become extremely small or very large, hindering effective learning 
over long sequences. This limitation led to more advanced RNN archi-
tectures, such as LSTM and GRU, which mitigate the gradient problem 
and capture long-term dependencies more effectively.

2.2. LSTM model

LSTM is a specialized type of RNN that addresses the challenge of 
capturing long-term dependencies in sequential data. The LSTM ar-
chitecture includes memory cells and gating mechanisms that enable 
the model to selectively retain or forget information from previous 
time steps, facilitating the modeling of complex temporal dynamics. 
Indeed, LSTM has garnered considerable attention as a powerful tool 
for time-series forecasting [37–39]. For example, Ruma et al. [40] ef-
fectively employed an optimized LSTM model to predict water levels in 
the Bangladesh river network. Likewise, Ahmed et al. [41] harnessed 
deep learning time series forecasting networks and LSTM to forecast 
municipal solid waste (MSW) generation. Furthermore, Singh et al. 
[42] showed LSTM’s good forecasting capabilities, particularly in wind 
power prediction.

In an LSTM, each memory cell is responsible for storing and propa-
gating information across time steps. The key components of an LSTM 
cell are the input gate, forget gate, output gate, and memory cell. These 
gates and the memory cell work in concert to control the flow of infor-
mation within the LSTM and determine which information should be 
remembered, forgotten, or outputted (see Fig. 2).

The equations governing the LSTM cell operations are as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖),

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓 ),

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜),

�̃�𝑡 = tanh(𝑊𝑐 ⋅ [ℎ𝑡− 1, 𝑥𝑡] + 𝑏𝑐 ),

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ �̃�𝑡,

(2)
⎪⎩ ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝐶𝑡),
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Fig. 3. Internal structure of a GRU highlighting its architectural design for cap-
turing sequential dependencies. It illustrates the key components, including the 
update and reset gates, as well as the candidate hidden state.

The input gate (𝑖𝑡) controls how much information from the current 
input should be stored in the memory cell. The forget gate (𝑓𝑡) deter-
mines the amount of information from the previous cell state (𝐶𝑡−1) that 
should be discarded. The output gate (𝑜𝑡) regulates the amount of infor-
mation from the current cell state (𝐶𝑡) to be outputted. The candidate 
cell state (�̃�𝑡) is a potential update to the current cell state, computed 
based on the current input and previous hidden state. The final cell 
state (𝐶𝑡) is a combination of the previous cell state and the candidate 
cell state, weighted by the forget and input gates. Finally, the hidden 
state (ℎ𝑡) is obtained by applying the output gate to the cell state after 
applying a hyperbolic tangent function.

Using memory cells and gating mechanisms, LSTMs can effectively 
capture and retain relevant information over longer sequences, over-
coming the vanishing or exploding gradient problem often encountered 
in basic RNNs. This makes LSTMs particularly suitable for modeling 
complex temporal dependencies and capturing long-term patterns in 
sequential data, including energy consumption patterns in WWTPs.

2.3. GRU model

GRU is another variant of RNN that addresses the challenges of cap-
turing and modeling long-term dependencies in sequential data [43]. 
The GRU architecture simplifies the structure of the LSTM while main-
taining comparable performance, making it computationally efficient. 
In a GRU, each unit has two key components: the update gate and the 
reset gate. These gates determine how much information from the pre-
vious time step should be passed on and how much new information 
should be incorporated. The update gate controls the balance between 
retaining the previous hidden state and incorporating new information, 
while the reset gate influences the extent to which the past hidden state 
affects the current state.

Overall, the GRU model simplifies the LSTM architecture by combin-
ing the forget and input gates into a single gate. The overall structure 
of the GRU model is illustrated in Fig. 3. The equations governing the 
operations of a GRU unit are as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑧𝑡 = 𝜎(𝑊𝑧 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑧),

𝑟𝑡 = 𝜎(𝑊𝑟 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑟),

ℎ̃𝑡 = tanh(𝑊ℎ ⋅ [𝑟𝑡 ⊙ ℎ𝑡− 1, 𝑥𝑡] + 𝑏ℎ),

ℎ𝑡 = (1 − 𝑧𝑡)⊙ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ̃𝑡,

(3)

Here, 𝑥𝑡 represents the input at time step 𝑡, ℎ𝑡 denotes the hidden state 
4

at time step 𝑡, and 𝑊 and 𝑏 denote the weight matrices and bias vectors, 
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respectively. The 𝜎 function represents the sigmoid activation function, 
and ⊙ denotes element-wise multiplication.

The update gate (𝑧𝑡) determines how much of the previous hidden 
state (ℎ𝑡−1) should be retained, while the reset gate (𝑟𝑡) controls the 
extent to which the past hidden state influences the current state. The 
candidate hidden state (ℎ̃𝑡) represents the potential update to the cur-
rent hidden state and is computed based on the reset gate, the previous 
hidden state, and the current input. Finally, the new hidden state (ℎ𝑡) 
is a combination of the previous and candidate hidden states, weighted 
by the update gate. By leveraging the update and reset gates, the GRU 
model can effectively control the flow of information, selectively re-
taining relevant past information and incorporating new information 
as necessary. This allows the model to capture long-term dependencies 
while being computationally efficient.

2.4. BiLSTM model

BiLSTM is a variant of RNN that enhances the modeling capabilities 
of traditional LSTM by incorporating information from both past and fu-
ture time steps [44]. This bidirectional processing allows the model to 
capture dependencies in both directions and effectively model tempo-
ral dynamics in sequential data [45]. In a BiLSTM, the input sequence 
is processed in two separate directions: one from the past to the future 
(forward direction) and the other from the future to the past (backward 
direction). This is achieved by having two sets of LSTM units, with one 
set processing the input sequence in the original order and the other set 
processing it in reverse. The forward LSTM units capture the informa-
tion from the past to the current time step, while the backward LSTM 
units capture the information from the future to the current time step. 
The outputs of the forward and backward units are then combined to 
obtain the final representation for each time step. The equations gov-
erning the operations of a BiLSTM unit are presented in Equations (4)
and (5).

Forward LSTM:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑖
𝑓

𝑡
= 𝜎(𝑊 𝑓

𝑖
⋅ [ℎ𝑓

𝑡−1, 𝑥𝑡] + 𝑏
𝑓

𝑖
),

𝑓
𝑓

𝑡
= 𝜎(𝑊 𝑓

𝑓
⋅ [ℎ𝑓

𝑡−1, 𝑥𝑡] + 𝑏
𝑓

𝑓
),

𝑜
𝑓

𝑡
= 𝜎(𝑊 𝑓

𝑜
⋅ [ℎ𝑓

𝑡−1, 𝑥𝑡] + 𝑏
𝑓
𝑜
),

�̃�𝑡𝑓 = tanh(𝑊 𝑓
𝑐
⋅ [ℎ𝑡− 1𝑓 , 𝑥𝑡] + 𝑏𝑓𝑐 ),

𝐶
𝑓

𝑡
= 𝑓𝑓

𝑡
⊙ 𝐶

𝑓

𝑡−1 + 𝑖
𝑓

𝑡
⊙ �̃�

𝑓

𝑡
,

ℎ
𝑓

𝑡
= 𝑜𝑓

𝑡
⊙ tanh(𝐶𝑓

𝑡
),

(4)

Backward LSTM:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑖𝑏
𝑡
= 𝜎(𝑊 𝑏

𝑖
⋅ [ℎ𝑏

𝑡+1, 𝑥𝑡] + 𝑏
𝑏
𝑖
),

𝑓 𝑏
𝑡
= 𝜎(𝑊 𝑏

𝑓
⋅ [ℎ𝑏

𝑡+1, 𝑥𝑡] + 𝑏
𝑏
𝑓
),

𝑜𝑏
𝑡
= 𝜎(𝑊 𝑏

𝑜
⋅ [ℎ𝑏

𝑡+1, 𝑥𝑡] + 𝑏
𝑏
𝑜
),

�̃�𝑡𝑏 = tanh(𝑊 𝑏
𝑐
⋅ [ℎ𝑡+ 1𝑏, 𝑥𝑡] + 𝑏𝑏𝑐 ),

𝐶𝑏
𝑡
= 𝑓𝑏

𝑡
⊙ 𝐶𝑏

𝑡+1 + 𝑖
𝑏
𝑡
⊙ �̃�𝑏

𝑡
,

ℎ𝑏
𝑡
= 𝑜𝑏

𝑡
⊙ tanh(𝐶𝑏

𝑡
),

(5)

Here, 𝑥𝑡 represents the input at time step 𝑡, ℎ𝑓
𝑡

and ℎ𝑏
𝑡

denote the hidden 
states at time step 𝑡 for the forward and backward units, respectively. 
𝐶
𝑓

𝑡
and 𝐶𝑏

𝑡
represent the cell states at time step 𝑡 for the forward and 

backward units, respectively. The 𝑊 and 𝑏 terms denote the weight 
matrices and bias vectors, respectively. The 𝜎 function represents the 
sigmoid activation function, and ⊙ denotes element-wise multiplica-
tion.

The final representation for each time step is obtained by concate-
nating the forward and backward hidden states: ℎ𝑡 = [ℎ𝑓

𝑡
, ℎ

𝑓

𝑡
]. By incor-

porating information from both past and future time steps, the BiLSTM 

model can effectively capture contextual information from the entire 
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Fig. 4. Architectural diagram of the BiGRU model, illustrating its dual recurrent 
pathways for capturing both past and future sequential dependencies, enhanc-
ing its predictive capabilities.

sequence and capture dependencies that are not apparent when pro-
cessing the data in a single direction. This makes the BiLSTM model 
well-suited for tasks involving sequential data, such as energy consump-
tion prediction in WWTPs, where both past and future observations can 
impact the energy consumption patterns.

2.5. BiGRU model

Similar to BiLSTM, BiGRU processes the input sequence in both for-
ward and backward directions simultaneously, allowing it to capture 
dependencies in both directions and model complex temporal dynam-
ics [46,47]. In a BiGRU, the input sequence is split into two streams: 
one processed in the original order (forward stream) and the other in 
reverse order (backward stream). Each stream consists of GRU units, 
which perform the gating operations to control the flow of informa-
tion (Fig. 4). The forward GRU units capture information from past to 
current time steps, while the backward GRU units capture information 
from future to current time steps. The outputs from both directions are 
combined to form the final representation for each time step.

The computation of the forward hidden state at time step 𝑡, referred 
to as ℎ𝑓

𝑡
, and the backward hidden state at time step 𝑡, denoted as ℎ𝑏

𝑡
, 

can be described by the following equations:{
ℎ
𝑓

𝑡
=𝐺𝑅𝑈 (𝑋𝑡,ℎ

𝑓

𝑡−1)

ℎ𝑏
𝑡
=𝐺𝑅𝑈 (𝑋𝑡,ℎ𝑏𝑡−1)

(6)

Then, the final representation, ℎ𝑡, for each time step is obtained by 
concatenating the hidden states from both directions:

ℎ𝑡 =𝑤𝑓
𝑡
∗ ℎ𝑓

𝑡
+𝑤𝑏

𝑡
∗ ℎ𝑏

𝑡
+ 𝑏𝑡, (7)

where the function 𝐺𝑅𝑈 (.) denotes the utilization of the GRU model to 
apply a nonlinear transformation to the input data. The weights 𝑤𝑓

𝑡
and 

𝑤𝑏
𝑡

correspond to the parameters associated with the forward hidden 
state ℎ𝑓

𝑡
and the backward hidden state ℎ𝑏

𝑡
, respectively. Furthermore, 

the bias term 𝑏𝑡 represents the additional parameter associated with the 
hidden layer state. These weights and bias terms play a vital role in 
the computation of the forward and backward hidden states within the 
GRU model.

Table 1 summarizes the key concepts, advantages, and limitations 
associated with the considered RNN models.

2.6. Data augmentation using interpolatiom

Time-series data augmentation plays a vital role in addressing 
the challenges posed by limited size datasets [48–50], particularly 
in WWTP time-series data. With the increasing demand for accurate 
predictions and optimization in WWTP operations, extensive and di-
5

verse data availability becomes crucial. However, acquiring large-scale 
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WWTP time-series datasets are often constrained by practical limita-
tions, resulting in small-sized datasets, especially when considering 
daily records. To overcome these limitations, data augmentation tech-
niques provide a promising solution. Among various augmentation 
methods, interpolation techniques have shown effectiveness in generat-
ing synthetic data points that closely resemble the original time series. 
By leveraging interpolation methods, we can artificially expand the 
dataset and capture a broader range of temporal patterns and varia-
tions within the limited data.

Cubic spline interpolation is a mathematical technique used to esti-
mate missing values and generate synthetic data points by constructing 
smooth and continuous curves between existing observations. It can 
be applied to each variable in the WWTP dataset, not limited to en-
ergy consumption alone. By applying cubic spline interpolation to the 
different variables, we can effectively increase the temporal resolution 
and capture finer details of the entire WWTP system, including biolog-
ical, hydraulic, and climate factors. The interpolation process involves 
fitting a cubic polynomial between adjacent data points for each vari-
able. Let’s consider a specific variable with observed data points at time 
steps 𝑡1, 𝑡2, … , 𝑡𝑛, denoted by 𝑦1, 𝑦2, … , 𝑦𝑛. The goal is to estimate the 
variable’s values at additional time steps within this range. The cubic 
spline interpolation function for estimating the value of the variable at 
a given time step 𝑡 can be defined as:

𝑦(𝑡) = 𝑎𝑖 + 𝑏𝑖(𝑡− 𝑡𝑖) + 𝑐𝑖(𝑡− 𝑡𝑖)2 + 𝑑𝑖(𝑡− 𝑡𝑖)3, (8)

where 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, and 𝑑𝑖 are coefficients specific to each interval [𝑡𝑖, 𝑡𝑖+1]. 
These coefficients are determined by satisfying certain continuity and 
smoothness conditions at the data points.

To generate synthetic data points, we select a set of additional time 
steps within the range of the original time series, denoted as 𝑡aug. Us-
ing the cubic spline interpolation function, we estimate the variable’s 
values at these time steps by substituting the corresponding values of 𝑡
into the equation. This process allows us to create a larger dataset with 
augmented data points that fill the gaps between the observed values 
for each WWTP variable.

3. Deep learning with data augmentation: a strategy for 
improved energy consumption prediction

Predicting energy consumption (EC) in WWTPs is crucial for design-
ing and operating sustainable and energy-efficient facilities. However, 
the complexity of EC, influenced by various biological and environ-
mental factors, poses challenges in developing accurate soft sensors. 
To address this, we propose an integrated approach that combines data 
augmentation using cubic spline interpolation with deep learning mod-
els for EC prediction in WWTPs. The adopted deep learning framework 
for energy consumption prediction in WWTPs used in this study is illus-
trated in Fig. 5.

The first step of our approach involves augmenting the dataset 
through cubic spline interpolation. This augmented data, which fills 
the gaps between observed values, provides a denser representation of 
the WWTP variables, capturing finer temporal details and variations. 
By merging the augmented data with the original dataset, we create a 
larger and more comprehensive training set. This augmented dataset 
offers a richer representation of the temporal dynamics and patterns in 
the WWTP variables.

Then, to ensure a comprehensive evaluation of the deep learning 
models trained on the augmented data, the augmented dataset is di-
vided into training and testing sets. Specifically, 75% of the augmented 
data is allocated for training the deep learning algorithms. This large 
portion of the data enables the models to learn from a diverse range of 
temporal patterns and dependencies present in the WWTP variables.

We then employ deep learning models, including RNN, LSTM, GRU, 
BiLSTM, and BiGRU, designed to capture the temporal dependencies 
and patterns present in the data. These models are trained using 

gradient-based optimization algorithms, such as Adam, to minimize the 
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Table 1

Comprehensive Overview of RNN Models: A summary highlighting the key concepts, advantages, and limitations of RNN, LSTM, GRU, BiLSTM, and BiGRU models.

Model Key Concept Advantages Limitations

RNN Recurrent connections allow information flow 
over time

Simplicity, low computational cost Difficulty capturing long-term dependencies 
(vanishing/exploding gradients)

LSTM Memory cells and gating mechanisms handle 
long-term memory

Captures long-term dependencies, mitigates 
gradient problem

Higher computational complexity than Simple 
RNN

GRU Combines forget and input gates, simplifying 
LSTM structure

Efficient, comparable performance to LSTM May not capture long-term dependencies as ef-
fectively

BiLSTM Processes input in both forward and backward 
directions

Captures dependencies in both directions, en-
hanced modeling

Higher computational complexity than unidi-
rectional models

BiGRU Processes input bidirectionally with simplified 
GRU structure

Efficient, captures dependencies in both direc-
tions

May have limitations in capturing very long-
term dependencies

Fig. 5. Deep Learning with Data Augmentation for Energy Consumption Prediction: An overview of the main steps, including data collection, augmentation, 
development of deep learning models, energy consumption prediction, and performance evaluation using statistical metrics.
loss function between the predicted and actual target values. The train-
ing process iteratively updates the model parameters to improve the 
models’ predictive performance. During the training phase, the mod-
els are optimized using the Adam optimization algorithm. Adam is an 
adaptive learning rate optimization algorithm that adjusts the learn-
ing rate for each parameter individually based on their past gradients. 
This adaptive mechanism facilitates efficient convergence and improved 
training performance of the deep learning models. The training process 
involves iteratively updating the model parameters by minimizing the 
loss function between the predicted and actual target values. This opti-
mization aims to improve the models’ predictive performance and their 
ability to accurately predict energy consumption in WWTPs. The models 
learn from the augmented training data, adjusting their internal repre-
sentations and parameters to capture the temporal dependencies and 
patterns within the variables.

Following the training phase, the trained models are evaluated using 
the testing data, which constitutes the remaining 25% of the augmented 
dataset. The testing data consists of unseen data points that were not 
utilized during the training process. By assessing the models’ perfor-
mance on this independent dataset, we gain insights into their ability 
to generalize to unseen data and make accurate predictions. During the 
evaluation phase, the models take the testing data as input and gener-
ate predictions for the target variable, which is the energy consumption 
in this context. The predictions are compared against the actual energy 
consumption values in the testing data to assess the models’ accuracy 
and performance. In this study, evaluation metrics, namely Root Mean 
Squared Error (RMSE), Mean Absolute Error (MAE), R-squared (R2): 
R2, also known as the coefficient of determination, Mean Squared Log-
arithmic Error (MSLE), and Mean Absolute Percentage Error (MAPE) 
are computed to quantify the models’ predictive capabilities and assess 
their effectiveness.

• RMSE is a widely used metric that measures the average deviation 
between the predicted values and the actual values. It provides 
an overall indication of the model’s accuracy, with lower values 
indicating better performance.√√√√ 1

𝑛−1∑
2

6

RMSE(𝑦, �̂�) =
𝑛
𝑖=0

(𝑦𝑖 − �̂�𝑖) , (9)
where 𝑦𝑡 represents the actual or observed value, �̂�𝑡 represents the 
actual or observed value, and 𝑛 represents the total number of data 
points.

• MAE is another commonly used metric that quantifies the average 
absolute difference between the predicted and actual values. It pro-
vides a measure of the average prediction error without considering 
the direction of the errors.

MAE(𝑦, �̂�) = 1
𝑛

𝑛−1∑
𝑖=0

‖𝑦𝑖 − �̂�𝑖‖1, (10)

• MAPE calculates the average percentage difference between the 
predicted and actual values. It is a relative measure that provides 
insights into the magnitude of errors compared to the actual values.

MAPE(𝑦, �̂�) = 1
𝑛

𝑛−1∑
𝑖=0

‖𝑦𝑖 − �̂�𝑖‖1
max(𝜖,‖𝑦𝑖‖1) , (11)

• R2 assesses the proportion of the variance in the dependent vari-
able that the independent variables can explain. It indicates how 
well the model fits the data, with higher values indicating better 
fit.

𝑅2 = 1 −
∑𝑛

𝑖=1(𝑦𝑖 − �̂�𝑖)
2∑𝑛

𝑖=1(𝑦𝑖 − �̄�)2
. (12)

• MSLE is a metric that measures the average logarithmic difference 
between the predicted and actual values. It is particularly useful 
when dealing with skewed or exponential data distributions.

𝑀𝑆𝐿𝐸 = 1
𝑛

𝑛∑
𝑖=1

(log(1 + 𝑦𝑖) − log(1 + �̂�𝑖))2. (13)

4. Results and discussion

4.1. Data description and analysis

This study capitalizes on using multivariate data sourced from the 
Melbourne water treatment plant and airport weather stations1 to ad-
1 https://data .mendeley .com /datasets /pprkvz3vbd /1.

https://data.mendeley.com/datasets/pprkvz3vbd/1
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Table 2

Abbreviations and Units of Analyzed Variables: This table provides the ab-
breviations and units for the variables analyzed in the study, encompassing 
hydraulic, wastewater, climate, and temporal parameters.

vance energy consumption prediction methodologies. Spanning a time-
frame of five years, from January 2014 to June 2019, the dataset en-
compasses a diverse array of nineteen variables as detailed in Table 2. 
These variables encompass crucial aspects such as power consump-
tion, biological characteristics, hydraulic factors, and climate variables. 
Water quality and biological data are meticulously collected through 
sensor-based measurements, while the weather data originates from the 
conveniently located Melbourne airport weather station adjacent to the 
water treatment plant. By integrating this comprehensive dataset, re-
searchers gain a holistic perspective of the intricate interrelationships 
that influence energy consumption at a wastewater treatment plant. Ad-
ditionally, the dataset offers valuable time-domain information that is 
considered in this study to enhance prediction performance. Detailed 
information about the dataset can be found in the comprehensive work 
by Bagherzadeh et al. [21]. To ensure data reliability, a careful data 
cleaning process was undertaken to eliminate outliers. Data points ex-
hibiting unusually high or low energy consumption were identified as 
outliers and subsequently removed from the dataset, resulting in the 
removal of approximately 5% of the data points [51].

Fig. 6 depicts Violin plots of the time-series data used in the WWTPs, 
revealing their non-Gaussian distribution. These plots offer more in-
sights than traditional boxplots and histograms by combining the bene-
fits of both visualization methods [52]. They provide summary statistics 
and depict data density across the entire range of the variable, offering 
a comprehensive understanding of the distribution. The width of the 
violin plot at each data point represents the density or frequency, facil-
itating comparisons between datasets. This feature is especially useful 
for comparing different variables or groups within the dataset. Addi-
tionally, violin plots excel at revealing asymmetries or multimodalities 
in the data, which might not be apparent in boxplots or histograms.

Fig. 7 displays the RadViz visualization, showcasing the impact of 
various factors on power consumption in the WWTP. RadViz is a data 
visualization technique that helps understand multiple variables’ im-
pact on a target variable. It works by projecting high-dimensional data 
onto a 2D plane while maintaining the relationships between the vari-
ables [53]. In a RadViz plot, each variable is represented by a point on 
a circle, and the target variable (in this case, power consumption in the 
7

WWTP) is represented at the circle’s center. The position of each point 
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on the circle is determined by the value of the corresponding variable, 
and the distance of the point from the center represents the contribution 
of that variable to the target variable.

From the Radviz plot in Fig. 7, it is evident that certain variables sig-
nificantly impact the energy consumption of the wastewater treatment 
plant (WWTP). Notably, the inflow and outflow rates are positioned 
close to the corresponding dimensional anchors, indicating their strong 
influence on energy consumption. This suggests that the volume of 
wastewater entering and leaving the plant plays a crucial role in de-
termining the energy requirements.

Furthermore, variables related to time, such as the day, also exhibit 
a noticeable effect on energy consumption. This could imply that spe-
cific days or time periods may lead to higher energy demands due to 
fluctuations in wastewater flow or operational requirements. Tempera-
ture variables, including average temperature and minimum and maxi-
mum temperatures, are also positioned close to their respective anchors. 
This indicates that temperature variations can significantly impact the 
energy consumption of the WWTP, as certain treatment processes might 
be more energy-intensive under different temperature conditions. In ad-
dition to the aforementioned factors, chemical composition variables, 
such as Total Nitrogen (TN), Chemical Oxygen Demand (COD), and 
Biological Oxygen Demand (BOD), appear to have a substantial influ-
ence on energy consumption. This suggests that the composition of the 
wastewater, particularly in terms of these pollutants, can affect the en-
ergy requirements for treatment processes. By analyzing the Radviz 
plot, we gain valuable insights into the relative importance of differ-
ent variables on energy consumption in the WWTP. These observations 
can guide decision-making and resource allocation strategies to opti-
mize energy usage and improve the overall efficiency of wastewater 
treatment operations. Researchers and stakeholders can utilize this in-
formation to focus on specific variables and devise targeted measures to 
reduce energy consumption, enhance sustainability, and achieve cost-
effectiveness in the WWTP’s energy management.

Fig. 8 illustrates the yearly distribution of key variables, including 
Energy Consumption, Average Inflow, and Average Outflow, through-
out the study period from 2014 to 2018. The violin plots offer a compre-
hensive view of the data distribution, highlighting the variability and 
patterns in these variables over time. By examining these plots, we gain 
valuable insights into the seasonal trends and long-term changes in en-
ergy consumption and water flow rates within WWTPs. Upon analyzing 
the plots, a notable trend emerges, revealing a slight decrease in the 
annual distribution of energy consumption in 2018 compared to 2017. 
This reduction is evident in both the average values and standard devi-
ations, suggesting a potential improvement in the operational efficiency 
or management practices of the WWTP during that period. The observed 
decrease in energy consumption aligns with the increasing emphasis on 
sustainable practices and energy-efficient technologies in wastewater 
treatment facilities. Furthermore, the violin plots provide evidence of a 
strong correlation between Energy Consumption, Average Inflow, and 
Average Outflow. This suggests that the inflow rate plays a significant 
role in influencing the energy consumption of the WWTP. In 2018, a 
noticeable decline in the inflow rate is observed compared to the previ-
ous year (2017). This decrease in the inflow rate could be attributed to 
factors such as changes in weather patterns, fluctuations in population 
or industrial activities, or alterations in water usage behavior. The re-
duction in the inflow rate likely contributed to the observed decrease in 
power consumption, as the WWTP would have had to process a lower 
volume of wastewater, thus requiring less energy for treatment. Over-
all, the presented violin plots offer a comprehensive overview of the 
energy consumption and water flow dynamics in the WWTP over the 
studied years.

The violin plots in Fig. 9 provide a comprehensive visual repre-
sentation of the monthly energy consumption patterns throughout the 
study period. One striking observation is the substantial increase in 
variance during the hot months of October, November, and December. 

This heightened variability underscores the importance of considering 
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Fig. 6. Exploratory Violin Plots: Violin plots visually represent the distribution and spread of the time-series data used in this study.

Fig. 7. RadViz Visualization of Factors Impacting WWTP Power Consumption: This visualization, based on RadViz, offers insights into how various factors influence 
power consumption within the WWTP.
external factors, such as weather conditions and tourism, when develop-
ing accurate energy consumption prediction models. The rise in energy 
consumption during the hot months can be attributed to the surge in 
water usage for cooling and recreational activities. As temperatures in-
crease, the demand for water for various cooling purposes, such as air 
conditioning and irrigation, also rises. This heightened water demand 
8

translates into increased energy requirements for pumping, aeration, 
and other processes involved in treating and managing wastewater. 
The connection between higher temperatures and increased energy con-
sumption emphasizes the need for WWTPs to be well-prepared for 
such seasonal variations to ensure continuous and reliable operation. 
Furthermore, the influx of tourists during the holiday season can ex-
ert additional pressure on local water and wastewater infrastructure. 

Tourist destinations experience a substantial rise in visitors during this 
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Fig. 8. Annual distribution of key variables in the monitored WWTP over the study period from 2014 to 2018, visualized using violin plots: (a) Energy Consumption, 
(b) Average Inflow, and (c) Average Outflow.
time, leading to a spike in water usage and wastewater generation. As a 
result, WWTPs may need to ramp up their capacity to cope with the aug-

mented load, further contributing to higher energy consumption. The 
insights gained from the monthly energy consumption patterns can have 
practical implications for the management and optimization of WWTPs. 
By understanding the seasonal fluctuations in energy demand, opera-

tors can implement strategies to improve energy efficiency and reduce 
operational costs. For instance, implementing energy-saving measures 
during low-demand periods or adopting demand response strategies 
can help manage energy consumption during peak periods. In addition, 
the knowledge of seasonal energy consumption trends can aid in in-

frastructure planning and investment decisions. For areas experiencing 
significant tourism-related fluctuations in water usage, authorities can 
plan and allocate resources to expand WWTP capacity accordingly, en-

suring that the infrastructure is well-equipped to handle peak demands 
without compromising operational efficiency. Overall, considering the 
seasonal and climatic influences on energy consumption in WWTPs is 
essential for developing robust and accurate energy consumption pre-
9

diction models.
4.2. Predicting energy consumption using all input variables

The first experiment involves exploring the application of deep 
learning models, namely RNN, LSTM, GRU, BiLSTM, and BiGRU, for 
the prediction of energy consumption in WWTPs. All input variables, 
such as power consumption, biological characteristics, hydraulic condi-
tions, and climate variables, are fed into these models. The output layer 
generates predictions for energy consumption based on the learned rep-
resentations and patterns. For the experiment, we divide the data into 
training and testing subsets. The training data consists of 75% of the 
available data from January 1, 2014, to January 28, 2018, while the 
testing data covers the remaining 25% from January 29, 2018, to June 
27, 2019. To address the challenge of limited data availability, we em-
ploy cubic spline interpolation as a data augmentation technique. This 
process increases the dataset size, expanding the original 1382 records 
by a factor of 10. By augmenting the data, we aim to enhance the 
models’ learning capabilities and improve their predictive performance, 
even with limited training data.

In this study, the deep learning models are trained with specific 
hyperparameters to optimize their performance in predicting WWTP 
energy consumption. We use 100 epochs and a batch size of 250 dur-

ing the training process. The models consist of 32 hidden units and use 
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Fig. 9. Violin plots showing the monthly energy consumption distribution throughout the study period, visually highlighting density variations and potential patterns 
in the data beyond conventional statistical summaries.
Table 3

Comparison of prediction results between deep learning models (i.e., RNN, 
LSTM, GRU, BiLSTM, and BiGRU) using augmented and non-augmented data: 
evaluating RMSE, MAE, 𝑅2 , MSLE, and MAPE metrics.

Data Model RMSE MAE 𝑅2 MSLE MAPE

Non-Augmented 
data

RNN 45.753 35.247 -0.331 0.03 13.225
GRU 50.049 38.643 -0.593 0.034 14.676
LSTM 45.912 35.779 -0.34 0.029 13.504
BiGRU 50.185 39.246 -0.601 0.035 14.678
BiLSTM 49.009 37.544 -0.527 0.033 14.598

Augmented data

RNN 44.447 34.445 -0.182 0.028 13.097
GRU 42.883 33.752 -0.1 0.026 12.885
LSTM 42.861 33.622 -0.099 0.026 12.854
BiGRU 47.448 38.407 -0.347 0.031 13.831
BiLSTM 43.135 33.994 -0.113 0.026 12.985

the ‘Relu’ activation function. The cross-entropy loss function and the 
‘Adam’ optimizer are employed to guide the learning process. These 
parameter values are carefully selected to ensure effective training and 
improve the predictive capabilities of the deep learning models. To eval-
uate the performance of the models. To further investigate the impact 
of data augmentation, we compare the performance of the deep learn-
ing models trained on both augmented and non-augmented datasets. 
The results are presented in Table 3, allowing us to assess the data aug-
mentation technique’s effectiveness in improving the models’ predictive 
accuracy.

The results presented in Table 3 demonstrate that no single ap-
proach consistently outperforms all others in terms of all statistical 
scores. However, the MAPE values, which range between 12% and 
14%, indicate that there is still room for improvement in predicting 
WWTP energy consumption. Upon analyzing the results in Table 3, it 
becomes evident that the use of data augmentation has a positive im-
pact on the predictive performance of the deep learning models. The 
LSTM model trained on the augmented data achieves the best perfor-
mance, with a MAPE value of 12.854%. This indicates that the data 
augmentation technique helps the model to capture and generalizes un-
derlying patterns in the time-series data more effectively. Following 
closely, the GRU model trained on augmented data achieves a MAPE 
value of 12.885%, further supporting data augmentation’s effectiveness. 
On the other hand, when training the models on non-augmented data, 
the LSTM model still performs relatively well, achieving a MAPE value 
of 13.504%. However, the GRU model shows a higher MAPE value of 
14.676%, suggesting that the use of data augmentation significantly 
10

benefits the GRU model’s predictive accuracy.
In conclusion, the results indicate that the application of data aug-
mentation, especially with LSTM and GRU models, leads to improved 
predictions of WWTP energy consumption. While the models show 
promising performance, there is still scope for further enhancing the 
accuracy of the predictions and refining the models for better decision-
making and resource allocation in WWTPs.

4.3. EC prediction using dynamic models

This section aims to construct parsimonious models by using only 
the relevant features as inputs for WWTP energy consumption predic-
tion. Building upon our previous study [11], which demonstrated the 
benefits of incorporating important features and lagged energy con-
sumption, we further investigate the performance of dynamic deep 
learning models in predicting energy consumption in WWTPs. By adopt-
ing the important features identified through XGBoost and RF algo-
rithms, including the month, daily inflow rate (Q𝑖𝑛), average humidity, 
TN, BOD, and Ammonia, we focus on constructing models that capture 
the essential variables influencing energy consumption. Additionally, 
we incorporate lagged energy consumption data to account for the tem-
poral dynamics. Here, we consider two scenarios: training the models 
using a reduced dataset containing the relevant features, with and with-
out augmentation. Table 4 compares prediction results between deep 
learning models using augmented and non-augmented data with se-
lected features and lagged energy consumption.

The models are evaluated using various performance metrics to as-
sess their accuracy in predicting WWTP energy consumption. The com-
parison allows us to examine the impact of data augmentation on the 
models’ predictive capabilities and determine the effectiveness of incor-
porating lagged energy consumption.

The initial observation highlights a substantial improvement in the 
performance of deep learning models (RNN, GRU, LSTM, BiGRU, and 
BiLSTM) when using non-augmented data with selected features and 
lagged energy consumption (Table 4), as compared to using all fea-
tures without feature selection (Table 3). Including relevant features 
and temporal dynamics enhances the models’ ability to capture the 
critical variables affecting energy consumption more accurately. This 
finding aligns with the concept of parsimony in model construction, 
where focusing on important features leads to improved predictive 
capabilities. By incorporating only the significant variables and con-
sidering the temporal dependencies in energy consumption, the models 
are better equipped to understand the underlying patterns and trends, 
resulting in improved predictions. This observation highlights the im-

portance of feature selection and temporal consideration in optimizing 
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Table 4

Evaluating the considered deep learning approaches for accurate energy con-
sumption prediction: augmented vs. non-augmented data, incorporating lagged 
energy consumption.

Data Model RMSE MAE 𝑅2 MSLE MAPE

Augmented data

RNN 7.498 5.924 0.964 0.001 2.182

GRU 6.513 4.698 0.973 0.001 1.738

LSTM 5.821 3.685 0.978 0.001 1.36

BiGRU 5.921 3.912 0.978 0.001 1.436

BiLSTM 6.273 4.165 0.975 0.001 1.533

Non-Augmented 
data

RNN 38.655 29.446 0.106 0.021 11.196

GRU 38.683 29.771 0.105 0.021 10.88

LSTM 37.759 28.698 0.147 0.02 10.738

BiGRU 39.064 30.087 0.087 0.021 11

BiLSTM 39.114 30.055 0.085 0.021 11.001

the predictive performance of deep learning models for WWTP energy 
consumption prediction.

The second observation from Table 4 highlights a significant en-
hancement in prediction accuracy when employing deep learning mod-
els based on augmented data compared to non-augmented data. Specif-
ically, the deep learning models trained on augmented data achieved 
MAPE values ranging between 1% and 2.8%. In contrast, when using 
non-augmented data, the MAPE values ranged between 10% and 11%. 
This improvement in prediction accuracy can be attributed to the ben-
efits of data augmentation through cubic spline interpolation. By aug-
menting the original dataset, we were able to generate additional data 
points that capture finer temporal details and variations in the WWTP 
variables. The augmented data provided a richer representation of the 
underlying patterns and dynamics, enabling the deep-learning models 
to learn from an expanded range of temporal dependencies. Compara-
tively, the deep learning models trained solely on non-augmented data 
had limited exposure to temporal patterns and dependencies due to 
the smaller dataset size. This resulted in higher MAPE values, indi-
cating a relatively higher average percentage difference between the 
predicted and actual energy consumption values. The significant reduc-
tion in MAPE values observed when using deep learning models with 
augmented data highlights the effectiveness of data augmentation in 
capturing the complex temporal dynamics of WWTP energy consump-
tion.

When considering the models trained on augmented data, we ob-
serve that all models achieved improved performance compared to 
those trained on non-augmented data. The 𝑅2 values for all models 
were high, ranging from 0.964 to 0.978. These values indicate that a 
significant portion of the variance in the energy consumption data was 
captured by the models. The MSLE values for all models were close 
to zero, suggesting accurate predictions. Additionally, the MAPE val-
ues were relatively low for all models, ranging from 1.36% to 2.182%. 
The MAPE values achieved by the deep learning models trained on aug-
mented data further highlight the effectiveness of data augmentation in 
improving prediction accuracy. Overall, the combination of data aug-
mentation with cubic spline interpolation and the selection of relevant 
input features proved to be a successful strategy for achieving satis-
factory prediction performance. This approach not only improved the 
accuracy of the predictions but also reduced the computational burden 
by utilizing a more concise set of features.

Fig. 10 demonstrates the prediction results obtained from the vari-
ous deep learning models using the testing data. The plots reveal that 
the deep learning models exhibit the ability to accurately predict the fu-
ture trend of energy consumption in the studied WWTP. This indicates 
that the models have successfully captured the underlying patterns and 
temporal dependencies in the time-series data, allowing them to gener-
ate reliable predictions.

Furthermore, Fig. 11 provides valuable insights into the prediction 
11

performance of the five deep learning models based on augmented data. 
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Table 5

Comparison of the predictive performance of the investigated deep learning 
models in this study with SOTA methods reported in the literature.

Methods RMSE (MWh) MAE (MWh) MAPE(%) R2

GBM [21] 33.9 26.9 – 0.18
RF [21] 34.8 27.7 – 0.14
ANN [21] 39.8 32.1 – 0
RNN [21] 37.3 29.3 – 0.01

KNN [11] 37.33 28.23 10.65 –
XGBoost [11] 37.14 28.5 10.81 –
LightGBM [11] 37.38 28.63 10.96 –
GPRRQ [11] 37.45 28.65 10.04 –
GSVR [11] 37.7 28.88 10.12 –
BT [11] 37.56 28.75 10.27 –

This study, RNN 7.498 5.924 2.182 0.964
This study, GRU 6.513 4.698 1.738 0.973
This study, LSTM 5.821 3.685 1.36 0.978
This study, BiGRU 5.921 3.912 1.436 0.978
This study, BiLSTM 6.273 4.165 1.533 0.975

The boxplot and empirical cumulative distribution function (ECDF) of 
the prediction errors offer a comprehensive view of the distribution of 
errors for each model. Upon analysis, it is evident that both the LSTM 
and BiGRU models demonstrate superior prediction performance com-
pared to the other models. The narrower spread and lower variability in 
the prediction errors of LSTM and BiGRU highlight their robustness in 
generating more accurate predictions, indicating that they have effec-
tively learned and captured the complex patterns in the WWTP energy 
consumption time-series data. These findings corroborate the effective-
ness of data augmentation and the selection of relevant features, as 
discussed earlier, in improving the performance of deep learning mod-
els.

4.4. Comparison with previous studies

Table 5 presents a comparison of the performance of our proposed 
deep learning models (RNN, LSTM, GRU, BiLSTM, BiGRU) with the 
state-of-the-art (SOTA) methods for WWTP energy consumption pre-
diction. It is worth noting that the ‘-’ symbol indicates that the values 
were not provided in the original study for direct comparison. In [21], 
the prediction results of GBM, RF, ANN, and RNN models are obtained 
based on selected features. In [11], various machine learning tech-
niques, including KNN, XGBoost, LightGBM, GPR, SVR, and Bagged 
Tree, have been investigated using selected relevant features and lagged 
1 energy consumption data. Comparing the performance of these ma-
chine learning models with our proposed deep learning models, it 
is evident that our framework significantly outperforms the machine 
learning approaches. For instance, the best-performing model in [11], 
kNN, achieved an RMSE of 37.33 MWh, MAE of 28.23 MWh, and MAPE 
of 10.65%.

In terms of RMSE and MAE, our deep learning models (RNN, GRU, 
LSTM, BiGRU, and BiLSTM) outperform the previous methods by a 
significant margin. The lower RMSE and MAE values in our models 
indicate their ability to provide more accurate predictions of WWTP 
energy consumption. Specifically, the LSTM model achieved the best 
performance with an RMSE of 5.821 MWh and an MAE of 3.685 MWh, 
showcasing its effectiveness in capturing complex temporal dependen-
cies and patterns in the data. The MAPE values further confirm the 
superiority of our deep learning models, as they exhibit substantially 
lower error percentages compared to the previous methods. The LSTM 
and BiGRU models achieved the lowest MAPE values of 1.36% and 
1.436%, respectively, demonstrating their capability to predict WWTP 
energy consumption with high precision.

Overall, the results in Table 5 demonstrate that the proposed deep 
learning models, combined with data augmentation and feature se-

lection, outperform the previous state-of-the-art methods in predicting 
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Fig. 10. (a) Line plots and (b) scatter plots illustrating the predicted energy consumption by the five deep learning models using augmented testing data. The green 
line in (b) represents perfect prediction.

Fig. 11. (a) Boxplot illustrating the distribution of prediction errors; models with more compact boxplots around zero exhibit better predictive performance. (b) 
ECDF displaying the cumulative distribution of prediction errors obtained from the five considered deep learning models.
WWTP energy consumption. The remarkable reduction in RMSE, MAE, 
and MAPE values achieved by our LSTM model compared to the best-

performing machine learning model highlights the advantage of lever-
12

aging the temporal dependencies and nonlinear relationships inherent 
in deep learning models. The significant improvements in accuracy and 
precision achieved by our models can have practical implications for 
WWTP management and decision-making, leading to more efficient re-
source allocation and enhanced sustainability.
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5. Conclusion

This study proposed an efficient approach for energy consumption 
prediction in WWTPs, employing deep learning models, data augmen-
tation, and feature selection. Integrating data augmentation using cubic 
spline interpolation provided a denser representation of WWTP vari-
ables, capturing finer temporal details. Additionally, RF and XGBoost 
algorithms were employed for feature selection, improving model effi-
ciency. Furthermore, the study explored the inclusion of lagged power 
consumption data, enhancing the models’ ability to capture temporal 
dependencies. The deep learning models outperformed conventional 
machine learning methods, highlighting the benefits of this approach 
for accurate energy prediction in WWTPs.

The models developed in this study serve as valuable tools for in-
formed decision-making and proactive energy management in WWTP 
operations. Indeed, accurate energy consumption prediction has multi-
faceted benefits. Firstly, it enables substantial cost savings, a crucial 
factor for the efficient operation of WWTPs. By accurately forecast-
ing energy needs, resource allocation can be optimized, reducing un-
necessary expenditures and enhancing overall financial sustainability. 
Secondly, this approach could empower WWTPs to streamline their pro-
cesses and improve operational efficiency. When energy consumption is 
predicted with precision, adjustments, and optimizations can be made 
in real-time, ensuring that the facility operates at its highest efficiency 
levels. This not only saves costs but also contributes to the WWTP’s 
compliance with stringent effluent quality regulations. Additionally, by 
accurately forecasting energy needs, WWTPs can proactively manage 
their energy sources, potentially incorporating renewable energy solu-
tions. This shift towards more sustainable practices aligns with global 
efforts to reduce carbon emissions and mitigate the environmental im-
pact of industrial processes.
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